Skip to main content
Log in

Aspirin Attenuates Pulmonary Arterial Hypertension in Rats by Reducing Plasma 5-Hydroxytryptamine Levels

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is characterized by increasing pulmonary pressure, right ventricular failure, and death. The typical pathological changes include medial hypertrophy, intimal fibrosis and in situ thrombosis. Serotonin (5-HT) and other factors contribute to the development of pathologic lesions. Aspirin (ASA), a platelet aggregation inhibitor, inhibits 5-HT release from platelets. The aim of this study was to determine the efficacy of ASA in preventing or attenuating PAH. Sprague–Dawley rats injected with monocrotaline (MCT) developed severe PAH within 31 days. One hundred forty rats were randomized to receive either vehicle or ASA (0.5, 1, 2, or 4 mg/kg/day). The pre-ASA group was treated with ASA (1 mg/kg/day) for 30 days before the MCT injection. Thirty-one days after the injection (day 61 for the pre-ASA group), pulmonary arterial pressure (PAP), right ventricular hypertrophy and pulmonary arteriole thickness were measured. Plasma 5-HT was measured by high-performance liquid chromatography. Aspirin suppressed PAH and increased the survival rate compared with the control group (84 vs. 60%, P < 0.05). Aspirin treatment also reduced right ventricular hypertrophy and pulmonary arteriole proliferation in ASA-treated PAH model. In addition, plasma 5-HT was decreased in our ASA-treated PAH model. The degree of 5-HT reduction was associated with systolic PAP, right ventricular hypertrophy and wall thickness of pulmonary arterioles in rats. These results showed that ASA treatment effectively attenuated MCT-induced pulmonary hypertension, right ventricular hypertrophy, and occlusion of the pulmonary arteries. The effects of ASA was associated with a reduction of 5-HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ASA:

Aspirin

IPAH:

Idiopathic pulmonary arterial hypertension

HPLC:

High-performance liquid chromatography

LV:

Left ventricle

MCT:

Monocrotaline

mPAP:

Mean pulmonary arterial pressure

mSAP:

Mean systemic arterial pressure

PAH:

Pulmonary arterial hypertension

PASMC:

Pulmonary arterial smooth muscle cell

PDE-5:

Phosphodiesterase-5

RV:

Right ventricle

RVHI:

Right ventricular hypertrophy index

RVSP:

Right ventricular systolic pressure

S:

Septum

SERT:

Serotonin reuptake transporter

sPAP:

Systolic pulmonary arterial pressure

WA %:

Percent wall area

References

  1. Tuder, R. M., Marecki, J. C., Richter, A., et al. (2007). Pathology of pulmonary hypertension. Clinics in Chest Medicine, 28(1), 23–42, vii.

    Article  PubMed  Google Scholar 

  2. Carlino, C., Tobias, J. D., Schneider, R. I., et al. (2010). Pulmonary hemodynamic response to acute combination and monotherapy with sildenafil and brain natriuretic peptide in rats with monocrotaline-induced pulmonary hypertension. American Journal of the Medical Sciences, 339(1), 55–59.

    Article  PubMed  Google Scholar 

  3. Gurtner, H. P. (1985). Aminorex and pulmonary hypertension. A review. Cor et Vasa, 27(2–3), 160–171.

    PubMed  CAS  Google Scholar 

  4. MacLean, M. R., Herve, P., Eddahibi, S., et al. (2000). 5-hydroxytryptamine and the pulmonary circulation: Receptors, transporters and relevance to pulmonary arterial hypertension. British Journal of Pharmacology, 131(2), 161–168.

    Article  PubMed  CAS  Google Scholar 

  5. MacLean, M. R. (2007). Pulmonary hypertension and the serotonin hypothesis: Where are we now? International Journal of Clinical Practice Supplement, 156, 27–31.

    Article  PubMed  CAS  Google Scholar 

  6. Kanai, Y., Hori, S., Tanaka, T., et al. (1993). Role of 5-hydroxytryptamine in the progression of monocrotaline induced pulmonary hypertension in rats. Cardiovascular Research, 27(9), 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  7. Herve, P., Launay, J. M., Scrobohaci, M. L., et al. (1995). Increased plasma serotonin in primary pulmonary hypertension. American Journal of Medicine, 99(3), 249–254.

    Article  PubMed  CAS  Google Scholar 

  8. Guignabert, C., Raffestin, B., Benferhat, R., et al. (2005). Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation, 111(21), 2812–2819.

    Article  PubMed  CAS  Google Scholar 

  9. Hironaka, E., Hongo, M., Sakai, A., et al. (2003). Serotonin receptor antagonist inhibits monocrotaline-induced pulmonary hypertension and prolongs survival in rats. Cardiovascular Research, 60(3), 692–699.

    Article  PubMed  CAS  Google Scholar 

  10. Tsai, T. H., Tsai, W. J., & Chen, C. F. (1995). Aspirin inhibits collagen-induced platelet serotonin release, as measured by microbore high-performance liquid chromatography with electrochemical detection. Journal of Chromatography. B Biomedical Applications, 669(2), 404–407.

    Article  CAS  Google Scholar 

  11. De, C. F. (1990). The role of serotonin in thrombogenesis. Clinical Physiology and Biochemistry, 8(Suppl 3), 40–49.

    Google Scholar 

  12. Kentera, D., Susic, D., & Zdravkovic, M. (1979). Effects of verapamil and aspirin on experimental chronic hypoxic pulmonary hypertension and right ventricular hypertrophy in rats. Respiration, 37(4), 192–196.

    Article  PubMed  CAS  Google Scholar 

  13. Delcroix, M., Melot, C., Lejeune, P., et al. (1992). Cyclooxygenase inhibition aggravates pulmonary hypertension and deteriorates gas exchange in canine pulmonary embolism. American Review of Respiratory Disease, 145(4 Pt 1), 806–810.

    PubMed  CAS  Google Scholar 

  14. Schultze, A. E., & Roth, R. A. (1998). Chronic pulmonary hypertension—the monocrotaline model and involvement of the hemostatic system. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 1(4), 271–346.

    Article  CAS  Google Scholar 

  15. Eddahibi, S., Humbert, M., Fadel, E., et al. (2001). Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. Journal of Clinical Investigation, 108(8), 1141–1150.

    PubMed  CAS  Google Scholar 

  16. Guignabert, C., Izikki, M., Tu, L. I., et al. (2006). Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circulation Research, 98(10), 1323–1330.

    Article  PubMed  CAS  Google Scholar 

  17. Morecroft, I., Pang, L., Baranowska, M., et al. (2010). In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovascular Research, 85(3), 593–603.

    Article  PubMed  CAS  Google Scholar 

  18. Newman, J. H., Fanburg, B. L., Archer, S. L., et al. (2004). Pulmonary arterial hypertension: Future directions: Report of a National Heart, Lung and Blood Institute/Office of Rare Diseases workshop. Circulation, 109(24), 2947–2952.

    Article  PubMed  Google Scholar 

  19. Dumitrascu, R., Koebrich, S., Dony, E., et al. (2008). Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury. BMC Pulmonary Medicine, 8, 25.

    Article  PubMed  Google Scholar 

  20. Ramos, M. F., Lame, M. W., Segall, H. J., et al. (2008). Smad signaling in the rat model of monocrotaline pulmonary hypertension. Toxicologic Pathology, 36(2), 311–320.

    Article  PubMed  CAS  Google Scholar 

  21. Vane, J. R., & Botting, R. M. (2003). The mechanism of action of aspirin. Thrombosis Research, 110(5–6), 255–258.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson, S. R., Granton, J. T., & Mehta, S. (2006). Thrombotic arteriopathy and anticoagulation in pulmonary hypertension. Chest, 130(2), 545–552.

    Article  PubMed  CAS  Google Scholar 

  23. Shen, J., He, B., & Wang, B. (2005). Effects of lipo-prostaglandin E1 on pulmonary hemodynamics and clinical outcomes in patients with pulmonary arterial hypertension. Chest, 128(2), 714–719.

    Article  PubMed  CAS  Google Scholar 

  24. Robbins, I. M., Kawut, S. M., Yung, D., et al. (2006). A study of aspirin and clopidogrel in idiopathic pulmonary arterial hypertension. European Respiratory Journal, 27(3), 578–584.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Cai Yong for his help with statistics, Dr. Lin Peisen for help with the rat experiments and Mr. David Proctor for English revising. This study was supported by a grant from the Shanghai Municipal Health Bureau (2007103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben He.

Additional information

Jieyan Shen is the principle investigator of the original study; she is the co-first authors of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Shen, J., Pu, J. et al. Aspirin Attenuates Pulmonary Arterial Hypertension in Rats by Reducing Plasma 5-Hydroxytryptamine Levels. Cell Biochem Biophys 61, 23–31 (2011). https://doi.org/10.1007/s12013-011-9156-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9156-x

Keywords

Navigation