Skip to main content
Log in

Sarpogrelate hydrochloride, a serotonin 5HT2A receptor antagonist, ameliorates the development of chronic hypoxic pulmonary hypertension in rats

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to determine if sarpogrelate hydrochloride (SPG), a serotonin 5HT2A receptor antagonist, prevented the development of chronic hypoxia-induced pulmonary hypertension (PH) and hypertensive pulmonary vascular remodeling.

Methods

Forty-one male Sprague–Dawley rats were exposed to hypobaric hypoxia (380 mmHg, 10 % oxygen) or room air and administered 50 mg/kg SPG or vehicle by gavage once daily from day −2 to day 14. The mean pulmonary artery pressure (PAP) and right ventricular hypertrophy (RVH) were measured. Hypertensive pulmonary vascular remodelings were assessed morphometrically by light microscopy. Serotonin-induced contraction was determined in isolated pulmonary artery rings from 24 rats. In another set of rats, Western blotting, real-time polymerase chain reaction and immunofluorescent staining (n = 9) for lung tissue were performed.

Results

Chronic hypoxia induced a rise in mean PAP and RVH, increased the percentage of muscularized arteries in peripheral pulmonary arteries and medial wall thickness in small muscular arteries, and potentiated serotonin-induced contraction, each of which was significantly (p < 0.05) ameliorated by SPG. Chronic hypoxia significantly increased the expression of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) protein levels, cyclic guanosine monophosphate, and matrix metalloproteinase-13 (MMP-13) mRNA levels in whole lung tissues. SPG increased peNOS expression in the immunofluorescent staining of peripheral pulmonary arteries from chronic hypoxic rats and decreased the MMP-13 mRNA in lung tissue in chronic hypoxic rats.

Conclusions

The administration of SPG ameliorated the development of chronic hypoxic PH and hypertensive pulmonary vascular changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2008;118:2372–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121:2045–66.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Meyrick B, Reid L. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest. 1978;38:188–200.

    CAS  PubMed  Google Scholar 

  4. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol. 1979;236:H818–27.

    CAS  PubMed  Google Scholar 

  5. MacLean MR. Pulmonary hypertension, anorexigens and 5-HT: pharmacological synergism in action? Trends Pharmacol Sci. 1999;20:490–5.

    Article  CAS  PubMed  Google Scholar 

  6. Herve P, Launay JM, Scrobohaci ML, Brenot F, Simonneau G, Petitpretz P, Poubeau P, Cerrina J, Duroux P, Drouet L. Increased plasma serotonin in primary pulmonary hypertension. Am J Med. 1995;99:249–54.

    Article  CAS  PubMed  Google Scholar 

  7. Callebert J, Esteve JM, Herve P, Peoc’h K, Tournois C, Drouet L, Launay JM, Maroteaux L. Evidence for a control of plasma serotonin levels by 5-hydroxytryptamine(2B) receptors in mice. J Pharmacol Exp Ther. 2006;317:724–31.

    Article  CAS  PubMed  Google Scholar 

  8. Launay JM, Herve P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med. 2002;8:1129–35.

    Article  CAS  PubMed  Google Scholar 

  9. Keegan A, Morecroft I, Smillie D, Hicks MN, MacLean MR. Contribution of the 5-HT(1B) receptor to hypoxia-induced pulmonary hypertension: converging evidence using 5-HT(1B)-receptor knockout mice and the 5-HT(1B/1D)-receptor antagonist GR127935. Circ Res. 2001;89:1231–9.

    Article  CAS  PubMed  Google Scholar 

  10. Marcos E, Adnot S, Pharm MH, Nosjean A, Raffestin B, Hamon M, Eddahibi S. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am J Respir Crit Care Med. 2003;168:487–93.

    Article  PubMed  Google Scholar 

  11. Miyazaki M, Higashi Y, Goto C, Chayama K, Yoshizumi M, Sanada H, Orihashi K, Sueda T. Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol. 2007;49:221–7.

    Article  CAS  PubMed  Google Scholar 

  12. Igarashi M, Okuda T, Oh-i T, Koga M. Changes in plasma serotonin concentration and acceleration plethysmograms in patients with Raynaud’s phenomenon after long-term treatment with a 5-HT2 receptor antagonist. J Dermatol. 2000;27:643–50.

    Article  CAS  PubMed  Google Scholar 

  13. Shinohara Y, Nishimaru K, Sawada T, Terashi A, Handa S, Hirai S, Hayashi K, Tohgi H, Fukuuchi Y, Uchiyama S, Yamaguchi T, Kobayashi S, Kondo K, Otomo E, Gotoh F. S-ACCESS Study Group. Sarpogrelate-aspirin comparative clinical study for efficacy and safety in secondary prevention of cerebral infarction (S-ACCESS): a randomized, double-blind, aspirin-controlled trial. Stroke. 2008;39:1827–33.

    Article  CAS  PubMed  Google Scholar 

  14. Satomura K, Takase B, Hamabe A, Ashida K, Hosaka H, Ohsuzu F, Kurita A. Sarpogrelate, a specific 5HT2-receptor antagonist, improves the coronary microcirculation in coronary artery disease. Clin Cardiol. 2002;25:28–32.

    Article  PubMed  Google Scholar 

  15. Kato S, Kishiro I, Machida M, Fuse D, Yoshida T, Kaneko N. Suppressive effect of sarpogrelate hydrochloride on respiratory failure and right ventricular failure with pulmonary hypertension in patients with systemic sclerosis. J Int Med Res. 2000;28:258–68.

    Article  CAS  PubMed  Google Scholar 

  16. Hironaka E, Hongo M, Sakai A, Mawatari E, Terasawa F, Okumura N, Yamazaki A, Ushiyama Y, Yazaki Y, Kinoshita O. Serotonin receptor antagonist inhibits monocrotaline-induced pulmonary hypertension and prolongs survival in rats. Cardiovasc Res. 2003;60:692–9.

    Article  CAS  PubMed  Google Scholar 

  17. Iwabayashi M, Taniyama Y, Sanada F, Azuma J, Iekushi K, Kusunoki H, Chatterjee A, Okayama K, Rakugi H, Morishita R. Role of serotonin in angiogenesis: induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis. 2012;220:337–42.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K. Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J. 2010;74:1696–703.

    Article  CAS  PubMed  Google Scholar 

  19. Mitani Y, Maruyama K, Sakurai M. Prolonged administration of l-arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation. 1997;96:689–97.

    Article  CAS  PubMed  Google Scholar 

  20. Maruyama J, Maruyama K, Mitani Y, Kitabatake M, Yamauchi T, Miyasaka K. Continuous low-dose NO inhalation does not prevent monocrotaline-induced pulmonary hypertension in rats. Am J Physiol. 1997;272:H517–24.

    CAS  PubMed  Google Scholar 

  21. Mitani Y, Maruyama J, Jiang BH, Sawada H, Shimpo H, Imanaka-Yoshida K, Kaneda Y, Komada Y, Maruyama K. Atrial natriuretic peptide gene transfection with a novel envelope vector system ameliorates pulmonary hypertension in rats. J Thorac Cardiovasc Surg. 2008;36:142–9.

    Article  Google Scholar 

  22. Maruyama J, Maruyama K. Impaired nitric oxide-dependent responses and their recovery in hypertensive pulmonary arteries of rats. Am J Physiol. 1994;266:H2476–88.

    CAS  PubMed  Google Scholar 

  23. Maruyama K, Maruyama J, Yokochi A, Muneyuki M, Miyasaka K. Vasodilatory effects of ketamine on pulmonary arteries in rats with chronic hypoxic pulmonary hypertension. Anesth Analg. 1995;80:786–92.

    CAS  PubMed  Google Scholar 

  24. Vajner L, Vytásek R, Lachmanová V, Uhlík J, Konrádová V, Novotná J, Hampl V, Herget J. Acute and chronic hypoxia as well as 7-day recovery from chronic hypoxia affects the distribution of pulmonary mast cells and their MMP-13 expression in rats. Int J Exp Pathol. 2006;87:383–91.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Maruyama K, Ye CL, Woo M, Venkatacharya H, Lines LD, Silver MM, Rabinovitch M. Chronic hypoxic pulmonary hypertension in rats and increased elastolytic activity. Am J Physiol. 1991;261:H1716–26.

    CAS  PubMed  Google Scholar 

  26. Ilkiw R, Todorovich-Hunter L, Maruyama K, Shin J, Rabinovitch M. SC-39026, a serine elastase inhibitor, prevents muscularization of peripheral arteries, suggesting a mechanism of monocrotaline-induced pulmonary hypertension in rats. Circ Res. 1989;64:814–25.

    Article  CAS  PubMed  Google Scholar 

  27. Kouyoumdjian C, Adnot S, Levame M, Eddahibi S, Boushaa H, Raffestin B. Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats. J Clin Invest. 1994;94:578–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rabinovitch M, Konstam MA, Gamble WJ, Papanicolaou N, Aronovitz MJ, Treves S, Reid L. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ Res. 1983;52:432–41.

    Article  CAS  PubMed  Google Scholar 

  29. Rashid M, Nakazawa M, Nagatomo T. Effects of sarpogrelate, a novel 5-HT2 antagonist, on 5-HT-induced endothelium-dependent relaxations in porcine coronary artery. Jpn J Pharmacol. 2002;89:405–12.

    Article  CAS  PubMed  Google Scholar 

  30. Israilova M, Suzuki F, Tanaka T, Nagatomo T, Taniguchi T, Muramatsu I. Binding and functional affinity of sarpogrelate, its metabolite m-1 and ketanserin for human recombinant alpha-1-adrenoceptor subtypes. Pharmacology. 2002;65:69–73.

    Article  CAS  PubMed  Google Scholar 

  31. Campbell AI, Kuliszewski MA, Stewart DJ. Cell-based gene transfer to the pulmonary vasculature: endothelial nitric oxide synthase overexpression inhibits monocrotaline-induced pulmonary hypertension. Am J Respir Cell Mol Biol. 1999;21:567–75.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res. 2005;96:442–50.

    Article  CAS  PubMed  Google Scholar 

  33. Miyata M, Ito M, Sasajima T, Ohira H, Sato Y, Kasukawa R. Development of monocrotaline-induced pulmonary hypertension is attenuated by a serotonin receptor antagonist. Lung. 2000;178:63–73.

    Article  CAS  PubMed  Google Scholar 

  34. Miyata M, Ito M, Sasajima T, Ohira H, Kasukawa R. Effect of a serotonin receptor antagonist on interleukin-6-induced pulmonary hypertension in rats. Chest. 2001;119:554–61.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg HC, Rabinovitch M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Physiol. 1988;255:H1484–91.

    CAS  PubMed  Google Scholar 

  36. Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, McKeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011;187:2711–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Golembeski SM, West J, Tada Y, Fagan KA. Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest. 2005;128:572S–3S.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-In-Aid for Scientific Research from the Japanese Association for the Promotion of Science. The authors thank Ms. A Okada and N Hiramtsu for the technical and secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Maruyama.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E., Maruyama, J., Yokochi, A. et al. Sarpogrelate hydrochloride, a serotonin 5HT2A receptor antagonist, ameliorates the development of chronic hypoxic pulmonary hypertension in rats. J Anesth 29, 715–723 (2015). https://doi.org/10.1007/s00540-015-2015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-015-2015-y

Keywords

Navigation