Skip to main content

Pathologies Involving the S100 Proteins and Rage

  • Chapter
Calcium Signalling and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 45))

Abstract

The S100 proteins are exclusively expressed in vertebrates and are the largest subgroup within the superfamily of EF-hand Ca 2+ -binding proteins

Generally, S100 proteins are organized as tight homodimers (some as heterodimers). Each subunit is composed of a C-terminal, ‘canonical’ EF-hand, common to all EF-hand proteins, and a N-terminal, ‘pseudo’ EF-hand, characteristic of S100 proteins. Upon Ca 2+ -binding, the C-terminal EF-hand undergoes a large conformational change resulting in the exposure of a hydrophobic surface responsible for target binding

A unique feature of this protein family is that some members are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via the Receptor for Advanced Glycation Endproducts, RAGE. Recently, larger assemblies of some S100 proteins (hexamers, tetramers, octamers) have been also observed and are suggested to be the active extracellular species required for receptor binding and activation through receptor multimerization

Most S100 genes are located in a gene cluster on human chromosome 1q21, a region frequently rearranged in human cancer

The functional diversification of S100 proteins is achieved by their specific cell- and tissue-expression patterns, structural variations, different metal ion binding properties (Ca 2+ , Zn 2+ and Cu 2+ ) as well as their ability to form homo-, hetero- and oligomeric assemblies

Here, we review the most recent developments focussing on the biological functions of the S100 proteins and we iscuss the presently available S100-specific mouse models and their possible use as human disease models

In addition, the S100-RAGE interaction and the activation of various cellular pathways will be discussed. Finally, the close association of S100 proteins with cardiomyopathy, cancer, inflammation and brain diseases is summarized as well as their use in diagnosis and their potential as drug targets to improve therapies in the future

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann GE, Marenholz I, Wolfer DP, Chan WY, Schäfer B, ErneP, Heizmann CW. 2006. S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses. Biochim Biophys Acta - Molecular Cell Research, in press.

    Google Scholar 

  • Adhikari BB, Wang K. 2001. S100A1 modulates skeletal muscle contraction by desensitizing calcium activation of isometric tension, stiffness and ATPase. FEBS Lett 497(2, 3):95–98.

    Article  PubMed  CAS  Google Scholar 

  • Ambartsumian N, Grigorian M, Lukanidin E. 2005. Genetically modified mouse models to study the role of metastasis-promoting S100A4(mts1) protein in metastatic mammary cancer. J Dairy Res 72 Spec No:27–33.

    Google Scholar 

  • Arcuri C, Giambanco I, Bianchi R, Donato R. 2002. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Neuroscience 109(2):371–388.

    Article  PubMed  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I, Fantoni A, Tenori L, Viezzoli MS. 2005. Structural interplay between calcium(II) and copper(II) binding to S100A13 protein. Angew Chem Int Ed Engl 44(39):6341–6344.

    Article  PubMed  CAS  Google Scholar 

  • Arumugam T, Simeone DM, Schmidt AM, Logsdon CD. 2004. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem 279(7):5059–5065.

    Article  PubMed  CAS  Google Scholar 

  • Arumugam T, Simeone DM, Van Golen K, Logsdon CD. 2005. S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11(15):5356–5364.

    Article  PubMed  CAS  Google Scholar 

  • Barger SW, Wolchok SR, Van Eldik LJ. 1992. Disulfide-linked S100 beta dimers and signal transduction. Biochim Biophys Acta 1160(1):105–112.

    PubMed  CAS  Google Scholar 

  • Baudier J, Bergeret E, Bertacchi N, Weintraub H, Gagnon J, Garin J. 1995. Interactions of myogenic bHLH transcription factors with calcium-binding calmodulin and S100a (alpha alpha) proteins. Biochemistry 34(24):7834–7846.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Gerard D. 1986. Ions binding to S100 proteins. II. Conformational studies and calcium-induced conformational changes in S100 alpha alpha protein: the effect of acidic pH and calcium incubation on subunit exchange in S100a (alpha beta) protein. J Biol Chem 261(18):8204–8212.

    PubMed  CAS  Google Scholar 

  • Baudier J, Glasser N, Gerard D. 1986. Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca 2+ binding on S100b protein. J Biol Chem 261(18):8192–8203.

    PubMed  CAS  Google Scholar 

  • Baudier J, Mochly-Rosen D, Newton A, Lee SH, Koshland DE, Jr., Cole RD. 1987. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry 26(10):2886–2893.

    Article  PubMed  CAS  Google Scholar 

  • Bell K, Shokrian D, Potenzieri C, Whitaker-Azmitia PM. 2003. Harm avoidance, anxiety, and response to novelty in the adolescent S-100beta transgenic mouse: role of serotonin and relevance to Down syndrome. Neuropsychopharmacology 28(10):1810–1816.

    Article  PubMed  CAS  Google Scholar 

  • Benfenati F, Ferrari R, Onofri F, Arcuri C, Giambanco I, Donato R. 2004. S100A1 codistributes with synapsin I in discrete brain areas and inhibits the F-actin-bundling activity of synapsin I. J Neurochem 89:1260–1270.

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Carrano CJ, Luchinat C, Piccioli M, Poggi L. 2002. A 15N NMR mobility study on the dicalcium P43M calbindin D9k and its mono-La3+-substituted form. Biochemistry 41(16):5104–5111.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Bunick CG, Chazin WJ. 2004. Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 1742(1–3):69–79.

    PubMed  CAS  Google Scholar 

  • Bhattacharya S, Large E, Heizmann CW, Hemmings B, Chazin WJ. 2003. Structure of the Ca 2+ /S100B/NDR kinase peptide complex: insights into S100 target specificity and activation of the kinase. Biochemistry 42(49):14416–14426.

    Article  PubMed  CAS  Google Scholar 

  • Bierhaus A, Haslbeck KM, Humpert PM, Liliensiek B, Dehmer T, Morcos M, Sayed AA, Andrassy M, Schiekofer S, Schneider JG, Schulz JB, Heuss D, Neundorfer B, Dierl S, Huber J, Tritschler H, Schmidt AM, Schwaninger M, Haering HU, Schleicher E, Kasper M, Stern DM, Arnold B, Nawroth PP. 2004. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 114(12):1741–1751.

    Article  PubMed  CAS  Google Scholar 

  • Boeshans KM, Wolf R, Voscopoulos C, Gillette W, Esposito D, Mueser TC, Yuspa SH, Ahvazi B. 2006. Purification, crystallization and preliminary X-ray diffraction of human S100A15. Acta Crystallograph Sect F Struct Biol Cryst Commun 62(Pt 5):467–470.

    Article  CAS  Google Scholar 

  • Boni R, Burg G, Doguoglu A, Ilg EC, Schafer BW, Muller B, Heizmann CW. 1997. Immunohistochemical localization of the Ca 2+ binding S100 proteins in normal human skin and melanocytic lesions. Br J Dermatol 137(1):39–43.

    Article  PubMed  CAS  Google Scholar 

  • Boom A, Pochet R, Authelet M, Pradier L, Borghgraef P, Van Leuven F, Heizmann CW, Brion JP. 2004. Astrocytic calcium/zinc binding protein S100A6 over expression in Alzheimer’s disease and in PS1/APP transgenic mice models. Biochim Biophys Acta 1742(1–3):161–168.

    PubMed  CAS  Google Scholar 

  • Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thogersen HC, Nyborg J, Kjeldgaard M. 1998. EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Structure 6(4):477–489.

    Article  PubMed  CAS  Google Scholar 

  • Brodersen DE, Nyborg J, Kjeldgaard M. 1999. Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca 2+ -bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry 38(6):1695–1704.

    Article  PubMed  CAS  Google Scholar 

  • Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, Hwang YC, Lerner S, Bakr S, Li Q, Lu Y, Song F, Qu W, Gomez T, Zou YS, Yan SF, Schmidt AM, Ramasamy R. 2006. Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury. Circulation 113(9):1226–1234.

    Article  PubMed  CAS  Google Scholar 

  • Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM. 2002. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59(7):1117–1128.

    Article  PubMed  CAS  Google Scholar 

  • Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, Fumagalli L. 2006. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res 83(5):897–906.

    Article  PubMed  CAS  Google Scholar 

  • Calabretta B, Battini R, Kaczmarek L, de Riel JK, Baserga R. 1986. Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 261(27):12628–12632.

    PubMed  CAS  Google Scholar 

  • Camby I, Lefranc F, Titeca G, Neuci S, Fastrez M, Dedecken L, Schafer BW, Brotchi J, Heizmann CW, Pochet R, Salmon I, Kiss R, Decaestecker C. 2000. Differential expression of S100 calcium-binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumours. Neuropathol Appl Neurobiol 26(1):76–90.

    Article  PubMed  CAS  Google Scholar 

  • Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. 2005. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 175(12):8296–8302.

    PubMed  CAS  Google Scholar 

  • Chan WY, Xia CL, Dong DC, Heizmann CW, Yew DT. 2003. Differential expression of S100 proteins in the developing human hippocampus and temporal cortex. Microsc Res Tech 60(6):600–613.

    Article  PubMed  CAS  Google Scholar 

  • Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP. 2003. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10): 1507–1515.

    Article  PubMed  CAS  Google Scholar 

  • Choi KC, Leung PC, Jeung EB. 2005. Biology and physiology of Calbindin-D9k in female reproductive tissues: involvement of steroids and endocrine disruptors. Reprod Biol Endocrinol 3:66.

    Article  PubMed  CAS  Google Scholar 

  • Chou DK, Zhang J, Smith FI, McCaffery P, Jungalwala FB. 2004. Developmental expression of receptor for advanced glycation end products (RAGE), amphoterin and sulfoglucuronyl (HNK-1) carbohydrate in mouse cerebellum and their role in neurite outgrowth and cell migration. J Neurochem 90(6): 1389–1401.

    Article  PubMed  CAS  Google Scholar 

  • Cross SS, Hamdy FC, Deloulme JC, Rehman I. 2005. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 46(3):256–269.

    Article  PubMed  CAS  Google Scholar 

  • De Vriese AS, Tilton RG, Mortier S, Lameire NH. 2006. Myofibroblast transdifferentiation of mesothelial cells is mediated by rage and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant.

    Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B. 2003. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7): 907–913.

    Article  PubMed  CAS  Google Scholar 

  • Deloulme JC, Gentil BJ, Baudier J. 2003. Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system. Microsc Res Tech 60(6):560–568.

    Article  PubMed  CAS  Google Scholar 

  • Delphin C, Ronjat M, Deloulme JC, Garin G, Debussche L, Higashimoto Y, Sakaguchi K, Baudier J. 1999. Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53. J Biol Chem 274(15):10539–10544.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey AC, Walsh MP, Shaw GS. 2003. Unmasking the annexin I interaction from the structure of Apo-S100A11. Structure 11(7):887–897.

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN. 2005a. Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 1746(1):18–27.

    Article  CAS  Google Scholar 

  • Ding Q, Keller JN. 2005b. Splice variants of the receptor for advanced glycosylation end products (RAGE) in human brain. Neurosci Lett 373(1):67–72.

    Article  CAS  Google Scholar 

  • Donato R. 1988. Calcium-independent, pH-regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro. J Biol Chem 263(1):106–110.

    PubMed  CAS  Google Scholar 

  • Donato R. 1991. Perspectives in S-100 protein biology. Review article. Cell Calcium 12(10):713–726.

    Article  PubMed  CAS  Google Scholar 

  • Donato R. 2001. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33(7):637–668.

    Article  PubMed  CAS  Google Scholar 

  • Donato R. 2003. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60(6):540–551.

    Article  PubMed  CAS  Google Scholar 

  • Donato R, Giambanco I, Aisa MC, di Geronimo G, Ceccarelli P, Rambotti MG, Spreca A. 1989. Cardiac S-100a0 protein: purification by a simple procedure and related immunocytochemical and immunochemical studies. Cell Calcium 10(2):81–92.

    Article  PubMed  CAS  Google Scholar 

  • Donier E, Rugiero F, Okuse K, Wood JN. 2005. Annexin II light chain p11 promotes functional expression of acid-sensing ion channel ASIC1a. J Biol Chem 280(46):38666–38672.

    Article  PubMed  CAS  Google Scholar 

  • Drohat AC, Baldisseri DM, Rustandi RR, Weber DJ. 1998. Solution structure of calcium-bound rat S100B(betabeta) as determined by nuclear magnetic resonance spectroscopy. Biochemistry 37(9):2729–2740.

    Article  PubMed  CAS  Google Scholar 

  • Drohat AC, Tjandra N, Baldisseri DM, Weber DJ. 1999. The use of dipolar couplings for determining the solution structure of rat apo-S100B(betabeta). Protein Sci 8(4):800–809.

    Article  PubMed  CAS  Google Scholar 

  • Du XJ, Cole TJ, Tenis N, Gao XM, Kontgen F, Kemp BE, Heierhorst J. 2002. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice. Mol Cell Biol 22(8): 2821–2829.

    Article  PubMed  CAS  Google Scholar 

  • Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM. 1997. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci U S A 94(10):5296–5301.

    Article  PubMed  CAS  Google Scholar 

  • Dyck RH, Bogoch, II, Marks A, Melvin NR, Teskey GC. 2002. Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res 106(1, 2):22–29.

    Article  PubMed  CAS  Google Scholar 

  • El-Naaman C, Grum-Schwensen B, Mansouri A, Grigorian M, Santoni-Rugiu E, Hansen T, Kriajevska M, Schafer BW, Heizmann CW, Lukanidin E, Ambartsumian N. 2004. Cancer predisposition in mice deficient for the metastasis-associated Mts1(S100A4) gene. Oncogene 23(20):3670–3680.

    Article  PubMed  CAS  Google Scholar 

  • Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. 2004. S100 proteins in the epidermis. J Invest Dermatol 123(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  • Eckert RL, Lee KC. 2006. S100A7 (Psoriasin): a story of mice and men. J Invest Dermatol 126(7): 1442–1444.

    Article  PubMed  CAS  Google Scholar 

  • Ehlermann P, Eggers K, Bierhaus A, Most P, Weichenhan D, Greten J, Nawroth PP, Katus HA, Remppis A. 2006. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products. Cardiovasc Diabetol 5:6.

    Article  PubMed  CAS  Google Scholar 

  • Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J, Heizmann CW, Katus HA. 2000. Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension. Biochim Biophys Acta 1500(2):249–255.

    PubMed  CAS  Google Scholar 

  • Emberley ED, Murphy LC, Watson PH. 2004. S100A7 and the progression of breast cancer. Breast Cancer Res 6(4):153–159.

    Article  PubMed  CAS  Google Scholar 

  • Endo H, Takenaga K, Kanno T, Satoh H, Mori S. 2002. Methionine aminopeptidase 2 is a new target for the metastasis-associated protein, S100A4. J Biol Chem 277(29):26396–26402.

    Article  PubMed  CAS  Google Scholar 

  • Eue I, Sorg C. 2001. Arachidonic acid specifically regulates binding of S100A8/9, a heterodimer complex of the S100 class of calcium binding proteins, to human microvascular endothelial cells. Atherosclerosis 154(2):505–508.

    Article  PubMed  CAS  Google Scholar 

  • Fano G, Angelella P, Mariggio D, Aisa MC, Giambanco I, Donato R. 1989a. S-100a0 protein stimulates the basal (Mg2+-activated) adenylate cyclase activity associated with skeletal muscle membranes. FEBS Lett 248(1-2):9–12.

    Article  CAS  Google Scholar 

  • Fano G, Marsili V, Angelella P, Aisa MC, Giambanco I, Donato R. 1989b. S-100a0 protein stimulates Ca 2+ -induced Ca 2+ release from isolated sarcoplasmic reticulum vesicles. FEBS Lett 255(2):381–384.

    Article  CAS  Google Scholar 

  • Farnaes L, Ditzel HJ. 2003. Dissecting the cellular functions of annexin XI using recombinant human annexin XI-specific autoantibodies cloned by phage display. J Biol Chem 278(35):33120–33126.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. 2005. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci U S A 102(13):4735–4740.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Calabretta B, deRiel JK, Battini R, Ghezzo F, Lauret E, Griffin C, Emanuel BS, Gurrieri F, Baserga R. 1987. Structural and functional analysis of a growth-regulated gene, the human calcyclin. J Biol Chem 262(17):8325–8332.

    PubMed  CAS  Google Scholar 

  • Filipek A, Heizmann CW, Kuznicki J. 1990. Calcyclin is a calcium and zinc binding protein. FEBS Lett 264(2):263–266.

    Article  PubMed  CAS  Google Scholar 

  • Filipek A, Jastrzebska B, Nowotny M, Kuznicki J. 2002a. CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 277(32):28848–28852.

    Article  CAS  Google Scholar 

  • Filipek A, Jastrzebska B, Nowotny M, Kwiatkowska K, Hetman M, Surmacz L, Wyroba E, Kuznicki J. 2002b. Ca 2+ -dependent translocation of the calcyclin-binding protein in neurons and neuroblastoma NB-2a cells. J Biol Chem 277(23):21103–21109.

    Article  CAS  Google Scholar 

  • Flyvbjerg A, Denner L, Schrijvers BF, Tilton RG, Mogensen TH, Paludan SR, Rasch R. 2004. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53(1): 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Franz C, Durussel I, Cox JA, Schafer BW, Heizmann CW. 1998. Binding of Ca 2+ and Zn2+ to human nuclear S100A2 and mutant proteins. J Biol Chem 273(30):18826–18834.

    Article  PubMed  CAS  Google Scholar 

  • Fritz G, Heizmann CW, Kroneck PM. 1998. Probing the structure of the human Ca 2+ - and Zn2+-binding protein S100A3: spectroscopic investigations of its transition metal ion complexes, and three-dimensional structural model. Biochim Biophys Acta 1448(2):264–276.

    Article  PubMed  CAS  Google Scholar 

  • Fritz G, Heizmann CW. 2004. 3D-structures of the Ca 2+ - and Zn2+-binding S100 proteins. A. Messerschmidt WB, M. Cygler, eds., editor. Chichester: John Wiley & Sons. p. 529–540.

    Google Scholar 

  • Fritz G, Mittl PR, Vasak M, Grutter MG, Heizmann CW. 2002. The crystal structure of metal-free human EF-hand protein S100A3 at 1.7-A resolution. J Biol Chem 277(36):33092–33098.

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Roder J. 1996. Spatial and nonspatial learning in mice: effects of S100 beta overexpression and age. Neurobiol Learn Mem 66(2):143–154.

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Wojtowicz JM, Marks A, Roder J. 1995. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem 2(1):26–39.

    Article  PubMed  CAS  Google Scholar 

  • Geroldi D, Falcone C, Emanuele E. 2006. Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 13(17):1971–1978.

    Article  PubMed  CAS  Google Scholar 

  • Glenney JR, Jr., Kindy MS, Zokas L. 1989. Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol 108(2):569–578.

    Article  PubMed  CAS  Google Scholar 

  • Goch G, Vdovenko S, Kozlowska H, Bierzynski A. 2005. Affinity of S100A1 protein for calcium increases dramatically upon glutathionylation. Febs J 272(10):2557–2565.

    Article  PubMed  CAS  Google Scholar 

  • Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, Nowygrod S, Wolf BM, Caliste X, Yan SF, Stern DM, Schmidt AM. 2001. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol 159(2):513–525.

    PubMed  CAS  Google Scholar 

  • Gribenko AV, Hopper JE, Makhatadze GI. 2001. Molecular characterization and tissue distribution of a novel member of the S100 family of EF-hand proteins. Biochemistry 40(51):15538–15548.

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, 3rd, Araoz C. 1989. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86(19):7611–7615.

    Article  PubMed  CAS  Google Scholar 

  • Grigorian M, Andresen S, Tulchinsky E, Kriajevska M, Carlberg C, Kruse C, Cohn M, Ambartsumian N, Christensen A, Selivanova G, Lukanidin E. 2001. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. J Biol Chem 276(25):22699–22708.

    Article  PubMed  CAS  Google Scholar 

  • Guignard F, Mauel J, Markert M. 1995. Identification and characterization of a novel human neutrophil protein related to the S100 family. Biochem J 309 (Pt 2):395–401.

    PubMed  CAS  Google Scholar 

  • Hagens G, Masouye I, Augsburger E, Hotz R, Saurat JH, Siegenthaler G. 1999. Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. Biochem J 339 (Pt 2):419–427.

    Article  PubMed  CAS  Google Scholar 

  • Haimoto H, Kato K. 1987. S100a0 (alpha alpha) protein, a calcium-binding protein, is localized in the slow-twitch muscle fiber. J Neurochem 48(3):917–923.

    Article  PubMed  CAS  Google Scholar 

  • Haimoto H, Kato K. 1988. S100a0 (alpha alpha) protein in cardiac muscle. Isolation from human cardiac muscle and ultrastructural localization. Eur J Biochem 171(1-2):409–415.

    Article  PubMed  CAS  Google Scholar 

  • Hancq S, Salmon I, Brotchi J, De Witte O, Gabius HJ, Heizmann CW, Kiss R, Decaestecker C. 2004a. S100A5: a marker of recurrence in WHO grade I meningiomas. Neuropathol Appl Neurobiol 30(2):178–187.

    Article  CAS  Google Scholar 

  • Hancq S, Salmon I, Brotchi J, Gabius HJ, Heizmann CW, Kiss R, Decaestecker C. 2004b. Detection of S100B, S100A6 and galectin-3 ligands in meningiomas as markers of aggressiveness. Int J Oncol 25(5):1233–1240.

    CAS  Google Scholar 

  • Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM, Reinhart TA, Oury TD. 2004. Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 279(48):50019–50024.

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama T, Okada M, Shimamoto S, Kubota Y, Kobayashi R. 2004. Identification of intracellular target proteins of the calcium-signaling protein S100A12. Eur J Biochem 271(18):3765–3775.

    Article  PubMed  CAS  Google Scholar 

  • He CJ, Zheng F, Stitt A, Striker L, Hattori M, Vlassara H. 2000. Differential expression of renal AGE-receptor genes in NOD mice: possible role in nonobese diabetic renal disease. Kidney Int 58(5):1931–1940.

    Article  PubMed  CAS  Google Scholar 

  • Heierhorst J, Kobe B, Feil SC, Parker MW, Benian GM, Weiss KR, Kemp BE. 1996. Ca 2+ /S100 regulation of giant protein kinases. Nature 380(6575):636–639.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW. 2005. The importance of calcium-binding proteins in childhood diseases. J Pediatr 147(6):731–738.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Cox JA. 1998. New perspectives on S100 proteins: a multi-functional Ca 2+ -, Zn(2+)- and Cu(2+)-binding protein family. Biometals 11(4):383–397.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Fritz G, Schafer BW. 2002. S100 proteins: structure, functions and pathology. Front Biosci 7: d1356–1368.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Schäfer BW, Fritz G. 2003. The familiy of S100 cell signaling proteins. In: Bradshaw RA, Dennis E, editors. Handbook of Cell Signaling. USA: Elsevier Science. p 87–93.

    Google Scholar 

  • Helfman DM, Kim EJ, Lukanidin E, Grigorian M. 2005. The metastasis associated protein S100A4: role in tumour progression and metastasis. Br J Cancer 92(11):1955–1958.

    Article  PubMed  CAS  Google Scholar 

  • Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. 2006. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 312(2):184–197.

    Article  PubMed  CAS  Google Scholar 

  • Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D. 2005. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11(14):5146–5152.

    Article  PubMed  CAS  Google Scholar 

  • Hibi K, Fujitake S, Takase T, Kodera Y, Ito K, Akiyama S, Shirane M, Nakao A. 2003. Identification of S100A2 as a target of the DeltaNp63 oncogenic pathway. Clin Cancer Res 9(11):4282–4285.

    PubMed  CAS  Google Scholar 

  • Hobbs JA, May R, Tanousis K, McNeill E, Mathies M, Gebhardt C, Henderson R, Robinson MJ, Hogg N. 2003. Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol 23(7):2564–2576.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM. 1999. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901.

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in human cancers. Science 253(5015):49–53.

    Article  PubMed  CAS  Google Scholar 

  • Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D, et al. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270(43):25752–25761.

    Article  PubMed  CAS  Google Scholar 

  • Hoyaux D, Boom A, Van den Bosch L, Belot N, Martin JJ, Heizmann CW, Kiss R, Pochet R. 2002. S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. J Neuropathol Exp Neurol 61(8):736–744.

    PubMed  CAS  Google Scholar 

  • Hsieh HL, Schafer BW, Cox JA, Heizmann CW. 2002. S100A13 and S100A6 exhibit distinct translocation pathways in endothelial cells. J Cell Sci 115(Pt 15):3149–3158.

    PubMed  CAS  Google Scholar 

  • Huber M, Siegenthaler G, Mirancea N, Marenholz I, Nizetic D, Breitkreutz D, Mischke D, Hohl D. 2005. Isolation and characterization of human repetin, a member of the fused gene family of the epidermal differentiation complex. J Invest Dermatol 124(5):998–1007.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen HJ, Fages C, Rauvala H. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274(28):19919–19924.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. 2000. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275(51):40096–40105.

    Article  PubMed  CAS  Google Scholar 

  • Ikura M, Ames JB. 2006. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci U S A 103(5):1159–1164.

    Article  PubMed  CAS  Google Scholar 

  • Ilg EC, Troxler H, Burgisser DM, Kuster T, Markert M, Guignard F, Hunziker P, Birchler N, Heizmann CW. 1996. Amino acid sequence determination of human S100A12 (P6, calgranulin C, CGRP, CAAF1) by tandem mass spectrometry. Biochem Biophys Res Commun 225(1):146–150.

    Article  PubMed  CAS  Google Scholar 

  • Inman KG, Yang R, Rustandi RR, Miller KE, Baldisseri DM, Weber DJ. 2002. Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12. J Mol Biol 324(5):1003–1014.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. 2000. The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr 56(Pt 5):559–566.

    Article  PubMed  CAS  Google Scholar 

  • Isobe T, Ishioka N, Masuda T, Takahashi Y, Ganno S, Okuyama T. 1983. A rapid separation of S100 subunits by high performance liquid chromatography: the subunit compositions of S100 proteins. Biochem Int 6(3):419–426.

    PubMed  CAS  Google Scholar 

  • Itou H, Yao M, Fujita I, Watanabe N, Suzuki M, Nishihira J, Tanaka I. 2002. The crystal structure of human MRP14 (S100A9), a Ca(2+)-dependent regulator protein in inflammatory process. J Mol Biol 316(2):265–276.

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson SR, Barraclough R, West CR, Rudland PS. 2004. S100A4 regulates cell motility and invasion in an in vitro model for breast cancer metastasis. Br J Cancer 90(1):253–262.

    Article  PubMed  CAS  Google Scholar 

  • Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A. 2006. Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188(3):493–501.

    Article  PubMed  CAS  Google Scholar 

  • Julenius K, Robblee J, Thulin E, Finn BE, Fairman R, Linse S. 2002. Coupling of ligand binding and dimerization of helix-loop-helix peptides: spectroscopic and sedimentation analyses of calbindin D9k EF-hands. Proteins 47(3):323–333.

    Article  PubMed  CAS  Google Scholar 

  • Kane D, Roth J, Frosch M, Vogl T, Bresnihan B, FitzGerald O. 2003. Increased perivascular synovial membrane expression of myeloid-related proteins in psoriatic arthritis. Arthritis Rheum 48(6):1676–1685.

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Kimura S. 1985. S100ao (alpha alpha) protein is mainly located in the heart and striated muscles. Biochim Biophys Acta 842(2–3):146–150.

    PubMed  CAS  Google Scholar 

  • Kerkhoff C, Klempt M, Kaever V, Sorg C. 1999. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. J Biol Chem 274(46):32672–32679.

    Article  PubMed  CAS  Google Scholar 

  • Kerkhoff C, Sorg C, Tandon NN, Nacken W. 2001. Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Biochemistry 40(1):241–248.

    Article  PubMed  CAS  Google Scholar 

  • Kettlewell S, Most P, Currie S, Koch WJ, Smith GL. 2005. S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes. J Mol Cell Cardiol 39(6):900–910.

    Article  PubMed  CAS  Google Scholar 

  • Kiewitz R, Acklin C, Minder E, Huber PR, Schafer BW, Heizmann CW. 2000a. S100A1, a new marker for acute myocardial ischemia. Biochem Biophys Res Commun 274(3):865–871.

    Article  CAS  Google Scholar 

  • Kiewitz R, Acklin C, Schafer BW, Maco B, Uhrik B, Wuytack F, Erne P, Heizmann CW. 2003. Ca 2+ -dependent interaction of S100A1 with the sarcoplasmic reticulum Ca 2+ -ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun 306(2):550–557.

    Article  PubMed  CAS  Google Scholar 

  • Kiewitz R, Lyons GE, Schafer BW, Heizmann CW. 2000b. Transcriptional regulation of S100A1 and expression during mouse heart development. Biochim Biophys Acta 1498(2-3):207–219.

    Google Scholar 

  • Kilby PM, Van Eldik LJ, Roberts GC. 1996. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure 4(9):1041–1052.

    Article  PubMed  CAS  Google Scholar 

  • Kiryushko D, Novitskaya V, Soroka V, Klingelhofer J, Lukanidin E, Berezin V, Bock E. 2006. Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein. Mol Cell Biol 26(9):3625–3638.

    Article  PubMed  CAS  Google Scholar 

  • Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM. 1999. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44):31740–31749.

    Article  PubMed  CAS  Google Scholar 

  • Kizawa K, Troxler H, Kleinert P, Inoue T, Toyoda M, Morohashi M, Heizmann CW. 2002. Characterization of the cysteine-rich calcium-binding S100A3 protein from human hair cuticles. Biochem Biophys Res Commun 299(5):857–862.

    Article  PubMed  CAS  Google Scholar 

  • Kizawa K, Tsuchimoto S, Hashimoto K, Uchiwa H. 1998. Gene expression of mouse S100A3, a cysteine-rich calcium-binding protein, in developing hair follicle. J Invest Dermatol 111(5):879–886.

    Article  PubMed  CAS  Google Scholar 

  • Koltzscher M, Neumann C, Konig S, Gerke V. 2003. Ca 2+ -dependent binding and activation of dormant ezrin by dimeric S100P. Mol Biol Cell 14(6):2372–2384.

    Article  PubMed  CAS  Google Scholar 

  • Kriajevska M, Fischer-Larsen M, Moertz E, Vorm O, Tulchinsky E, Grigorian M, Ambartsumian N, Lukanidin E. 2002. Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1). J Biol Chem 277(7):5229–5235.

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Lim CP, Dunn DS, Bellgard M. 2003. Genomic and phylogenetic analysis of the S100A7 (Psoriasin) gene duplications within the region of the S100 gene cluster on human chromosome 1q21. J Mol Evol 56(4):397–406.

    Article  PubMed  CAS  Google Scholar 

  • Kuznicki J, Filipek A, Heimann P, Kaczmarek L, Kaminska B. 1989a. Tissue specific distribution of calcyclin–10.5 kDa Ca 2+ -binding protein. FEBS Lett 254(1-2):141–144.

    Article  CAS  Google Scholar 

  • Kuznicki J, Filipek A, Hunziker PE, Huber S, Heizmann CW. 1989b. Calcium-binding protein from mouse Ehrlich ascites-tumour cells is homologous to human calcyclin. Biochem J 263(3):951–956.

    CAS  Google Scholar 

  • Kwon M, Yoon CS, Jeong W, Rhee SG, Waisman DM. 2005. Annexin A2-S100A10 heterotetramer, a novel substrate of thioredoxin. J Biol Chem 280(25):23584–23592.

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Tomasetto C, Sager R. 1991. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci U S A 88(7):2825–2829.

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Tomasetto C, Swisshelm K, Keyomarsi K, Sager R. 1992. Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci U S A 89(6):2504–2508.

    Article  PubMed  CAS  Google Scholar 

  • Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ. 2004. Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279(16):16511–16517.

    Article  PubMed  CAS  Google Scholar 

  • Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J. 2006. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol 359(4):961–972.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Schmidt AM. 1997. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272(26):16498–16506.

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Bresnick AR. 2006. The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res 66(10):5173–5180.

    Article  PubMed  CAS  Google Scholar 

  • Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S, Plachky J, Grone HJ, Kurschus FC, Schmidt AM, Yan SD, Martin E, Schleicher E, Stern DM, Hammerling GG, Nawroth PP, Arnold B. 2004. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113(11):1641–1650.

    Article  PubMed  CAS  Google Scholar 

  • Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H. 2004. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci U S A 101(32):11767–11772.

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD. 2001. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol 171(1):29–45.

    Article  PubMed  CAS  Google Scholar 

  • Luu HH, Zhou L, Haydon RC, Deyrup AT, Montag AG, Huo D, Heck R, Heizmann CW, Peabody TD, Simon MA, He TC. 2005. Increased expression of S100A6 is associated with decreased metastasis and inhibition of cell migration and anchorage independent growth in human osteosarcoma. Cancer Lett 229(1):135–148.

    Article  PubMed  CAS  Google Scholar 

  • Maco B, Mandinova A, Durrenberger MB, Schafer BW, Uhrik B, Heizmann CW. 2001. Ultrastructural distribution of the S100A1 Ca 2+ -binding protein in the human heart. Physiol Res 50(6):567–574.

    PubMed  CAS  Google Scholar 

  • Madsen P, Rasmussen HH, Leffers H, Honore B, Celis JE. 1992. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol 99(3):299–305.

    Article  PubMed  CAS  Google Scholar 

  • Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B, et al. 1991. Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol 97(4):701–712.

    Article  PubMed  CAS  Google Scholar 

  • Maelandsmo GM, Florenes VA, Mellingsaeter T, Hovig E, Kerbel RS, Fodstad O. 1997. Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer 74(4):464–469.

    Article  PubMed  CAS  Google Scholar 

  • Mandinova A, Soldi R, Graziani I, Bagala C, Bellum S, Landriscina M, Tarantini F, Prudovsky I, Maciag T. 2003. S100A13 mediates the copper-dependent stress-induced release of IL-1alpha from both human U937 and murine NIH 3T3 cells. J Cell Sci 116(Pt 13):2687–2696.

    Article  PubMed  CAS  Google Scholar 

  • Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, Frings W, Schonlau F, Roth J, Sorg C, Nacken W. 2003. Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol 23(3):1034–1043.

    Article  PubMed  CAS  Google Scholar 

  • Mannan AU, Nica G, Nayernia K, Mueller C, Engel W. 2003. Calgizarrin like gene (Cal) deficient mice undergo normal spermatogenesis. Mol Reprod Dev 66(4):431–438.

    Article  PubMed  CAS  Google Scholar 

  • Marenholz I, Heizmann CW. 2004. S100A16, a ubiquitously expressed EF-hand protein which is up-regulated in tumors. Biochem Biophys Res Commun 313(2):237–244.

    Article  PubMed  CAS  Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G. 2004a. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322(4):1111–1122.

    Article  CAS  Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G. 2004b. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322(4):1111–1122.

    Article  CAS  Google Scholar 

  • Marenholz I, Lovering RC, Heizmann CW. 2006. An update of the S100 nomenclature. Biochim Biophys Acta - Molecular Cell Research, in press.

    Google Scholar 

  • Marenholz I, Zirra M, Fischer DF, Backendorf C, Ziegler A, Mischke D. 2001. Identification of human epidermal differentiation complex (EDC)-encoded genes by subtractive hybridization of entire YACs to a gridded keratinocyte cDNA library. Genome Res 11(3):341–355.

    Article  PubMed  CAS  Google Scholar 

  • Marsili V, Mancinelli L, Menchetti G, Fulle S, Baldoni F, Fano G. 1992. S-100ab increases Ca 2+ release in purified sarcoplasmic reticulum vesicles of frog skeletal muscle. J Muscle Res Cell Motil 13(5):511–515.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa SI, Reed JC. 2001. Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7(5):915–926.

    Article  PubMed  CAS  Google Scholar 

  • McCormick MM, Rahimi F, Bobryshev YV, Gaus K, Zreiqat H, Cai H, Lord RS, Geczy CL. 2005. S100A8 and S100A9 in human arterial wall. Implications for atherogenesis. J Biol Chem 280(50):41521–41529.

    Article  PubMed  CAS  Google Scholar 

  • Menke M, Ross M, Gerke V, Steinem C. 2004. The molecular arrangement of membrane-bound annexin A2-S100A10 tetramer as revealed by scanning force microscopy. Chembiochem 5(7):1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen SE, Novitskaya V, Kriajevska M, Berezin V, Bock E, Norrild B, Lukanidin E. 2001. S100A12 protein is a strong inducer of neurite outgrowth from primary hippocampal neurons. J Neurochem 79(4):767–776.

    Article  PubMed  CAS  Google Scholar 

  • Minami H, Tokumitsu H, Mizutani A, Watanabe Y, Watanabe M, Hidaka H. 1992. Specific binding of CAP-50 to calcyclin. FEBS Lett 305(3):217–219.

    Article  PubMed  CAS  Google Scholar 

  • Miwa N, Kawamura S. 2003. Frog p26olf, a molecule with two S100-like regions in a single peptide. Microsc Res Tech 60(6):593–599.

    Article  PubMed  CAS  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G. 1995. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A 92(10):4407–4411.

    Article  PubMed  CAS  Google Scholar 

  • Moroz OV, Antson AA, Dodson EJ, Burrell HJ, Grist SJ, Lloyd RM, Maitland NJ, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB. 2002. The structure of S100A12 in a hexameric form and its proposed role in receptor signalling. Acta Crystallogr D Biol Crystallogr 58(Pt 3):407–413.

    Article  PubMed  CAS  Google Scholar 

  • Moroz OV, Antson AA, Grist SJ, Maitland NJ, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB. 2003a. Structure of the human S100A12-copper complex: implications for host-parasite defence. Acta Crystallogr D Biol Crystallogr 59(Pt 5):859–867.

    Article  CAS  Google Scholar 

  • Moroz OV, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB. 2003b. Multiple structural states of S100A12: A key to its functional diversity. Microsc Res Tech 60(6):581–592.

    Article  CAS  Google Scholar 

  • Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Borries M, Niroomand F, Pieske B, Janssen PM, Eschenhagen T, Karczewski P, Smith GL, Koch WJ, Katus HA, Remppis A. 2001. S100A1: a regulator of myocardial contractility. Proc Natl Acad Sci U S A 98(24):13889–13894.

    Google Scholar 

  • Most P, Boerries M, Eicher C, Schweda C, Ehlermann P, Pleger ST, Loeffler E, Koch WJ, Katus HA, Schoenenberger CA, Remppis A. 2003a. Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). J Biol Chem 278(48):48404–48412.

    Article  CAS  Google Scholar 

  • Most P, Boerries M, Eicher C, Schweda C, Volkers M, Wedel T, Sollner S, Katus HA, Remppis A, Aebi U, Koch WJ, Schoenenberger CA. 2005. Distinct subcellular location of the Ca 2+ -binding protein S100A1 differentially modulates Ca 2+ -cycling in ventricular rat cardiomyocytes. J Cell Sci 118(Pt 2):421–431.

    Article  PubMed  CAS  Google Scholar 

  • Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, Löffler E, Janssen PML, Eckhart AD, Martini J, Williams ML, Katus HA, Remppis A, Koch WJ. 2004. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest 114(11):1550–1563.

    Article  PubMed  CAS  Google Scholar 

  • Most P, Remppis A, Pleger ST, Loffler E, Ehlermann P, Bernotat J, Kleuss C, Heierhorst J, Ruiz P, Witt H, Karczewski P, Mao L, Rockman HA, Duncan SJ, Katus HA, Koch WJ. 2003b. Transgenic overexpression of the Ca 2+ -binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem 278(36):33809–33817.

    Article  CAS  Google Scholar 

  • Most P, Remppis A, Weber C, Bernotat J, Ehlermann P, Pleger ST, Kirsch W, Weber M, Uttenweiler D, Smith GL, Katus HA, Fink RH. 2003c. The C terminus (amino acids 75–94) and the linker region (amino acids 42–54) of the Ca 2+ -binding protein S100A1 differentially enhance sarcoplasmic Ca 2+ release in murine skinned skeletal muscle fibers. J Biol Chem 278(29):26356–26364.

    Article  CAS  Google Scholar 

  • Mueller A, Schafer BW, Ferrari S, Weibel M, Makek M, Hochli M, Heizmann CW. 2005. The calcium binding protein S100A2 interacts with p53 and modulates its transcriptional activity. J Biol Chem.

    Google Scholar 

  • Murphy LC, Murphy LJ, Tsuyuki D, Duckworth ML, Shiu RP. 1988. Cloning and characterization of a cDNA encoding a highly conserved, putative calcium binding protein, identified by an anti-prolactin receptor antiserum. J Biol Chem 263(5):2397–2401.

    PubMed  CAS  Google Scholar 

  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. 1992. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004.

    PubMed  CAS  Google Scholar 

  • Nelson MR, Thulin E, Fagan PA, Forsen S, Chazin WJ. 2002. The EF-hand domain: a globally cooperative structural unit. Protein Sci 11(2):198–205.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Lee IS, Shiraishi N, Ishikawa T, Ohta Y, Nishikimi M. 1997. Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage. J Biol Chem 272(37):23037–23041.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama H, Knopfel T, Endo S, Itohara S. 2002. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A 99(6):4037–4042.

    Article  PubMed  CAS  Google Scholar 

  • Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, Berezin V, Bock E, Lukanidin E. 2000. Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275(52):41278–41286.

    Article  PubMed  CAS  Google Scholar 

  • Oram S, Cai X, Haleem R, Cyriac J, Wang Z. 2006. Regulation of calcium homeostasis by S100RVP, an androgen-regulated S100 protein in the rat ventral prostate. Prostate 66(7):768–778.

    Article  PubMed  CAS  Google Scholar 

  • Ostendorp T, Heizmann CW, Kroneck PM, Fritz G. 2005. Purification, crystallization and preliminary X-ray diffraction studies on human Ca 2+ -binding protein S100B. Acta Crystallograph Sect F Struct Biol Cryst Commun 61(Pt 7):673–675.

    Article  CAS  Google Scholar 

  • Otterbein LR, Kordowska J, Witte-Hoffmann C, Wang CL, Dominguez R. 2002. Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure 10(4):557–567.

    Article  PubMed  CAS  Google Scholar 

  • Oyama Y, Shishibori T, Yamashita K, Naya T, Nakagiri S, Maeta H, Kobayashi R. 1997. Two distinct anti-allergic drugs, amlexanox and cromolyn, bind to the same kinds of calcium binding proteins, except calmodulin, in bovine lung extract. Biochem Biophys Res Commun 240(2):341–347.

    Article  PubMed  CAS  Google Scholar 

  • Pachydaki SI, Tari SR, Lee SE, Ma W, Tseng JJ, Sosunov AA, Cataldergirmen G, Scarmeas N, Caspersen C, Chang S, Schiff WM, Schmidt AM, Barile GR. 2006. Upregulation of RAGE and its ligands in proliferative retinal disease. Exp Eye Res 82(5):807–815.

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Rintala-Dempsey AC, Li Y, Shaw GS, Konermann L. 2006. Folding kinetics of the S100A11 protein dimer studied by time-resolved electrospray mass spectrometry and pulsed hydrogen-deuterium exchange. Biochemistry 45(9):3005–3013.

    Article  PubMed  CAS  Google Scholar 

  • Paresce DM, Ghosh RN, Maxfield FR. 1996. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17(3):553–565.

    Article  PubMed  CAS  Google Scholar 

  • Passey RJ, Williams E, Lichanska AM, Wells C, Hu S, Geczy CL, Little MH, Hume DA. 1999. A null mutation in the inflammation-associated S100 protein S100A8 causes early resorption of the mouse embryo. J Immunol 163(4):2209–2216.

    PubMed  CAS  Google Scholar 

  • Pedersen MV, Kohler LB, Grigorian M, Novitskaya V, Bock E, Lukanidin E, Berezin V. 2004. The Mts1/S100A4 protein is a neuroprotectant. J Neurosci Res 77(6):777–786.

    Article  PubMed  CAS  Google Scholar 

  • Pedrocchi M, Schafer BW, Mueller H, Eppenberger U, Heizmann CW. 1994. Expression of Ca(2+)-binding proteins of the S100 family in malignant human breast-cancer cell lines and biopsy samples. Int J Cancer 57(5):684–690.

    Article  PubMed  CAS  Google Scholar 

  • Pietas A, Schluns K, Marenholz I, Schafer BW, Heizmann CW, Petersen I. 2002. Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. Genomics 79(4):513–522.

    Article  PubMed  CAS  Google Scholar 

  • Pleger ST, Remppis A, Heidt B, Volkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Muller OJ, Eckhart AD, Katus HA, Koch WJ, Most P. 2005. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther 12(6):1120–1129.

    Article  PubMed  CAS  Google Scholar 

  • Potts BC, Smith J, Akke M, Macke TJ, Okazaki K, Hidaka H, Case DA, Chazin WJ. 1995. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. Nat Struct Biol 2(9):790–796.

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. 2005. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15(7):16R–28R.

    Article  PubMed  CAS  Google Scholar 

  • Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C. 1997. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem 272(14):9496–9502.

    Article  PubMed  CAS  Google Scholar 

  • Raybaud-Diogene H, Tetu B, Morency R, Fortin A, Monteil RA. 1996. p53 overexpression in head and neck squamous cell carcinoma: review of the literature. Eur J Cancer B Oral Oncol 32B(3):143–149.

    Article  PubMed  CAS  Google Scholar 

  • Reddy MA, Li SL, Sahar S, Kim YS, Xu ZG, Lanting L, Natarajan R. 2006a. Key role of SRC kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J Biol Chem.

    Google Scholar 

  • Reddy MA, Li SL, Sahar S, Kim YS, Xu ZG, Lanting L, Natarajan R. 2006b. Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J Biol Chem 281(19):13685–13693.

    Article  CAS  Google Scholar 

  • Remppis A, Greten T, Schafer BW, Hunziker P, Erne P, Katus HA, Heizmann CW. 1996. Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta 1313(3):253–257.

    Article  PubMed  Google Scholar 

  • Remppis A, Most P, Loffler E, Ehlermann P, Bernotat J, Pleger S, Borries M, Reppel M, Fischer J, Koch WJ, Smith G, Katus HA. 2002. The small EF-hand Ca 2+ binding protein S100A1 increases contractility and Ca 2+ cycling in rat cardiac myocytes. Basic Res Cardiol 97 Suppl 1:I56–62.

    PubMed  Google Scholar 

  • Remppis A, Pleger ST, Most P, Lindenkamp J, Ehlermann P, Schweda C, Loffler E, Weichenhan D, Zimmermann W, Eschenhagen T, Koch WJ, Katus HA. 2004. S100A1 gene transfer: a strategy to strengthen engineered cardiac grafts. J Gene Med 6(4):387–394.

    Article  PubMed  CAS  Google Scholar 

  • Reppel M, Sasse P, Piekorz R, Tang M, Roell W, Duan Y, Kletke A, Hescheler J, Nurnberg B, Fleischmann BK. 2005. S100A1 enhances the L-type Ca 2+ current in embryonic mouse and neonatal rat ventricular cardiomyocytes. J Biol Chem 280(43):36019–36028.

    Article  PubMed  CAS  Google Scholar 

  • Rety S, Osterloh D, Arie JP, Tabaries S, Seeman J, Russo-Marie F, Gerke V, Lewit-Bentley A. 2000. Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 8(2):175–184.

    Article  PubMed  CAS  Google Scholar 

  • Rety S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, Russo-Marie F, Lewit-Bentley A. 1999. The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol 6(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  • Ridinger K, Ilg EC, Niggli FK, Heizmann CW, Schafer BW. 1998. Clustered organization of S100 genes in human and mouse. Biochim Biophys Acta 1448(2):254–263.

    Google Scholar 

  • Ridinger K, Schafer BW, Durussel I, Cox JA, Heizmann CW. 2000. S100A13. Biochemical characterization and subcellular localization in different cell lines. J Biol Chem 275(12):8686–8694.

    Article  PubMed  CAS  Google Scholar 

  • Riuzzi F, Sorci G, Donato R. 2006. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 281(12):8242–8253.

    Article  PubMed  CAS  Google Scholar 

  • Robinson MJ, Tessier P, Poulsom R, Hogg N. 2002. The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem 277(5):3658–3665.

    Article  PubMed  CAS  Google Scholar 

  • Rong LL, Trojaborg W, Qu W, Kostov K, Yan SD, Gooch C, Szabolcs M, Hays AP, Schmidt AM. 2004a. Antagonism of RAGE suppresses peripheral nerve regeneration. Faseb J 18(15):1812–1817.

    Article  CAS  Google Scholar 

  • Rong LL, Yan SF, Wendt T, Hans D, Pachydaki S, Bucciarelli LG, Adebayo A, Qu W, Lu Y, Kostov K, Lalla E, Yan SD, Gooch C, Szabolcs M, Trojaborg W, Hays AP, Schmidt AM. 2004b. RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. Faseb J 18(15):1818–1825.

    Article  CAS  Google Scholar 

  • Roth J, Vogl T, Sorg C, Sunderkotter C. 2003. Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 24(4):155–158.

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Peters M, Prehn JH, Arolt V. 2003. S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632.

    Article  PubMed  CAS  Google Scholar 

  • Ruse M, Broome AM, Eckert RL. 2003. S100A7 (psoriasin) interacts with epidermal fatty acid binding protein and localizes in focal adhesion-like structures in cultured keratinocytes. J Invest Dermatol 121(1):132–141.

    Article  PubMed  CAS  Google Scholar 

  • Rustandi RR, Baldisseri DM, Inman KG, Nizner P, Hamilton SM, Landar A, Zimmer DB, Weber DJ. 2002. Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry 41(3):788–796.

    Article  PubMed  CAS  Google Scholar 

  • Rustandi RR, Baldisseri DM, Weber DJ. 2000. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 7(7):570–574.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi M, Miyazaki M, Sonegawa H, Kashiwagi M, Ohba M, Kuroki T, Namba M, Huh NH. 2004. PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. J Cell Biol 164(7):979–984.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi M, Miyazaki M, Takaishi M, Sakaguchi Y, Makino E, Kataoka N, Yamada H, Namba M, Huh NH. 2003. S100C/A11 is a key mediator of Ca(2+)-induced growth inhibition of human epidermal keratinocytes. J Cell Biol 163(4):825–835.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi M, Sonegawa H, Nukui T, Sakaguchi Y, Miyazaki M, Namba M, Huh NH. 2005. Bifurcated converging pathways for high Ca 2+ - and TGFbeta-induced inhibition of growth of normal human keratinocytes. Proc Natl Acad Sci U S A 102(39):13921–13926.

    Article  PubMed  CAS  Google Scholar 

  • Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. 2006. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396(2):201–214.

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195.

    Article  PubMed  CAS  Google Scholar 

  • Schafer BW, Fritschy JM, Murmann P, Troxler H, Durussel I, Heizmann CW, Cox JA. 2000. Brain S100A5 is a novel calcium-, zinc-, and copper ion-binding protein of the EF-hand superfamily. J Biol Chem 275(39):30623–30630.

    Article  PubMed  CAS  Google Scholar 

  • Schafer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW. 1995. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics 25(3):638–643.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Yan SD, Yan SF, Stern DM. 2001. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7):949–955.

    Article  PubMed  CAS  Google Scholar 

  • Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, Ekiel I, Pietrzynski G, Stanimirovic D, Alakhov V. 2005. Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J Biol Chem 280(21):20833–20841.

    Article  PubMed  CAS  Google Scholar 

  • Shao X, Li C, Fernandez I, Zhang X, Sudhof TC, Rizo J. 1997. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca 2+ -dependent electrostatic switch. Neuron 18(1):133–142.

    Article  PubMed  CAS  Google Scholar 

  • Sharp T. 2006. Neuroscience. A new molecule to brighten the mood. Science 311(5757):45–46.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi N, Nishikimi M. 1998. Suppression of copper-induced cellular damage by copper sequestration with S100b protein. Arch Biochem Biophys 357(2):225–230.

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa M, Fujiwara N, Hirabayashi S, Ohno H, Iida J, Makita K, Hata Y. 2004. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells. Genes Cells 9(2):165–174.

    Article  PubMed  CAS  Google Scholar 

  • Shishibori T, Oyama Y, Matsushita O, Yamashita K, Furuichi H, Okabe A, Maeta H, Hata Y, Kobayashi R. 1999. Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family. Biochem J 338 (Pt 3):583–589.

    Article  PubMed  CAS  Google Scholar 

  • Sivaraja V, Kumar TK, Prudovsky I, Yu C. 2005. Three-dimensional solution structure of a unique S100 protein. Biochem Biophys Res Commun 335(4):1140–1148.

    PubMed  CAS  Google Scholar 

  • Sorci G, Bianchi R, Giambanco I, Rambotti MG, Donato R. 1999. Replicating myoblasts and fused myotubes express the calcium-regulated proteins S100A1 and S100B. Cell Calcium 25(2):93–106.

    Article  PubMed  CAS  Google Scholar 

  • Sousa MM, Du Yan S, Fernandes R, Guimaraes A, Stern D, Saraiva MJ. 2001. Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci 21(19):7576–7586.

    PubMed  CAS  Google Scholar 

  • Srikrishna G, Panneerselvam K, Westphal V, Abraham V, Varki A, Freeze HH. 2001. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. J Immunol 166(7):4678–4688.

    PubMed  CAS  Google Scholar 

  • Stary M, Schneider M, Sheikh SP, Weitzer G. 2006. Parietal endoderm secreted S100A4 promotes early cardiomyogenesis in embryoid bodies. Biochem Biophys Res Commun 343(2):555–563.

    Article  PubMed  CAS  Google Scholar 

  • Stein U, Walther W, Crooks H, Waldman T, Harris ED, Arlt F, Mertins SD, Heizmann CW, Allard D, Birchmeier W, Schlag PM, Shoemaker RH. 2006. The metastasis associated gene S100A4 metastasin is a target of the B-catenin/TCF-pathway. Gastroenterology, in press.

    Google Scholar 

  • Stitt AW, He C, Vlassara H. 1999. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem Biophys Res Commun 256(3):549–556.

    Article  PubMed  CAS  Google Scholar 

  • Stulik J, Osterreicher J, Koupilova K, Knizek J, Bures J, Jandik P, Langr F, Dedic K, Schafer BW, Heizmann CW. 2000. Differential expression of the Ca 2+ binding S100A6 protein in normal, preneoplastic and neoplastic colon mucosa. Eur J Cancer 36(8):1050–1059.

    Article  PubMed  CAS  Google Scholar 

  • Sturchler E, Cox JA, I. Durussel, M. Weibel, C.W. Heizmann. 2006. S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem, in press.

    Google Scholar 

  • Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, Vaugeois JM, Nomikos GG, Greengard P. 2006. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311(5757):77–80.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM. 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360.

    Article  PubMed  CAS  Google Scholar 

  • Takizawa T, Arai S, Kizawa K, Uchiwa H, Sasaki I, Inoue T. 1999. Ultrastructural localization of S100A3, a cysteine-rich, calcium binding protein, in human scalp hair shafts revealed by rapid-freezing immunocytochemistry. J Histochem Cytochem 47(4):525–532.

    PubMed  CAS  Google Scholar 

  • Tarabykina S, Kriajevska M, Scott DJ, Hill TJ, Lafitte D, Derrick PJ, Dodson GG, Lukanidin E, Bronstein I. 2000. Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system. FEBS Lett 475(3):187–191.

    Article  PubMed  CAS  Google Scholar 

  • Teratani T, Watanabe T, Yamahara K, Kumagai H, Ishikawa A, Arai K, Nozawa R. 2002. Restricted expression of calcium-binding protein S100A5 in human kidney. Biochem Biophys Res Commun 291(3):623–627.

    Article  PubMed  CAS  Google Scholar 

  • Tomas A, Moss SE. 2003. Calcium- and cell cycle-dependent association of annexin 11 with the nuclear envelope. J Biol Chem 278(22):20210–20216.

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G, Ronjat M, Zorzato F. 1997. Interaction of S100A1 with the Ca 2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 36(38):11496–11503.

    Article  PubMed  CAS  Google Scholar 

  • Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG. 2003. The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart. Mol Cell Biochem 242(1-2):27–33.

    Article  PubMed  CAS  Google Scholar 

  • Vallely KM, Rustandi RR, Ellis KC, Varlamova O, Bresnick AR, Weber DJ. 2002. Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry 41(42):12670–12680.

    Article  PubMed  CAS  Google Scholar 

  • van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ. 2003. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. Embo J 22(7):1478–1487.

    Article  PubMed  Google Scholar 

  • van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP. 2005. The epithelial Ca 2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci U S A 102(48):17507–17512.

    Article  PubMed  CAS  Google Scholar 

  • Van Eldik LJ, Wainwright MS. 2003. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21(3-4):97–108.

    PubMed  Google Scholar 

  • Van Eldik LJ, Zimmer DB. 1987. Secretion of S-100 from rat C6 glioma cells. Brain Res 436(2):367–370.

    Article  PubMed  Google Scholar 

  • Vandal K, Rouleau P, Boivin A, Ryckman C, Talbot M, Tessier PA. 2003. Blockade of S100A8 and S100A9 suppresses neutrophil migration in response to lipopolysaccharide. J Immunol 171(5):2602–2609.

    Google Scholar 

  • Vissing H, Aagaard L, Tommerup N, Boel E. 1994. Localization of the human gene for advanced glycosylation end product-specific receptor (AGER) to chromosome 6p21.3. Genomics 24(3):606–608.

    Article  PubMed  CAS  Google Scholar 

  • Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. 2003. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 457(4):404–419.

    Article  PubMed  CAS  Google Scholar 

  • Vogel T, Leukert N, Barczyk, K. Strupat K, Roth J. Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim. Biophys. Acta - Molecular Cell Research; 2006, in press.

    Google Scholar 

  • Volkers M, Loughrey CM, Macquaide N, Remppis A, de George B, Wegner FV, Friedrich O, Fink RH, Koch WJ, Smith GL, Most P. 2006. S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium.

    Google Scholar 

  • Wang G, Platt-Higgins A, Carroll J, de Silva Rudland S, Winstanley J, Barraclough R, Rudland PS. 2006. Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 66(2):1199–1207.

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Rudland PS, White MR, Barraclough R. 2000a. Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1. J Biol Chem 275(15):11141–11146.

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Fernig DG, Martin-Fernandez M, Rudland PS, Barraclough R. 2005. Mutually antagonistic actions of S100A4 and S100A1 on normal and metastatic phenotypes. Oncogene 24(8):1445–1454.

    Google Scholar 

  • Wang G, Zhang S, Fernig DG, Spiller D, Martin-Fernandez M, Zhang H, Ding Y, Rao Z, Rudland PS, Barraclough R. 2004. Heterodimeric interaction and interfaces of S100A1 and S100P. Biochem J 382(Pt 1):375–383.

    PubMed  CAS  Google Scholar 

  • Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. 2000b. beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–5632.

    Article  CAS  Google Scholar 

  • Webb M, Emberley ED, Lizardo M, Alowami S, Qing G, Alfia’ar A, Snell-Curtis LJ, Niu Y, Civetta A, Myal Y, Shiu R, Murphy LC, Watson PH. 2005. Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis. BMC Cancer 5:17.

    Google Scholar 

  • Wicki R, Franz C, Scholl FA, Heizmann CW, Schafer BW. 1997. Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium 22(4):243–254.

    Article  PubMed  CAS  Google Scholar 

  • Wicki R, Marenholz I, Mischke D, Schafer BW, Heizmann CW. 1996a. Characterization of the human S100A12 (calgranulin C, p6, CAAF1, CGRP) gene, a new member of the S100 gene cluster on chromosome 1q21. Cell Calcium 20(6):459–464.

    Article  CAS  Google Scholar 

  • Wicki R, Schafer BW, Erne P, Heizmann CW. 1996b. Characterization of the human and mouse cDNAs coding for S100A13, a new member of the S100 protein family. Biochem Biophys Res Commun 227(2):594–599.

    Article  CAS  Google Scholar 

  • Wilder PT, Baldisseri DM, Udan R, Vallely KM, Weber DJ. 2003. Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Biochemistry 42(46):13410–13421.

    Article  PubMed  CAS  Google Scholar 

  • Wilder PT, Lin J, Bair CL, Charpentier TH, Yang D, Liriano M, Varney KM, Lee A, Oppenheim AB, Adhya S, Carrier F, Weber DJ. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. Biochim Biophys Acta - Molecular Cell Research; 2006, in press.

    Google Scholar 

  • Wilder PT, Rustandi RR, Drohat AC, Weber DJ. 1998. S100B (betabeta) inhibits the protein kinase C-dependent phosphorylation of a peptide derived from p53 in a Ca 2+ -dependent manner. Protein Sci 7(3):794–798.

    Article  PubMed  CAS  Google Scholar 

  • Winocur G, Roder J, Lobaugh N. 2001. Learning and memory in S100-beta transgenic mice: an analysis of impaired and preserved function. Neurobiol Learn Mem 75(2):230–243.

    Article  PubMed  CAS  Google Scholar 

  • Wolf R, Voscopoulos CJ, FitzGerald PC, Goldsmith P, Cataisson C, Gunsior M, Walz M, Ruzicka T, Yuspa SH. 2006. The mouse S100A15 ortholog parallels genomic organization, structure, gene expression, and protein-processing pattern of the human S100A7/A15 subfamily during epidermal maturation. J Invest Dermatol 126(7):1600–1608.

    Article  PubMed  CAS  Google Scholar 

  • Wright NT, Varney KM, Ellis KC, Markowitz J, Gitti RK, Zimmer DB, Weber DJ. 2005. The three-dimensional solution structure of Ca(2+)-bound S100A1 as determined by NMR spectroscopy. J Mol Biol 353(2):410–426.

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z, O’Hanlon D, Becker LE, Roder J, MacDonald JF, Marks A. 2000. Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res 257(2):281–289.

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Irie K, Hirota T, Ooshio T, Fukuhara A, Takai Y. 2005. Involvement of the annexin II-S100A10 complex in the formation of E-cadherin-based adherens junctions in Madin-Darby canine kidney cells. J Biol Chem 280(7):6016–6027.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H. 2001. Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81(4):2297–2313.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Ilg EC, Schafer BW, Heizmann CW, Kosaka T. 1999. Distribution of a specific calcium-binding protein of the S100 protein family, S100A6 (calcyclin), in subpopulations of neurons and glial cells of the adult rat nervous system. J Comp Neurol 404(2):235–257.

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM. 1996. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691.

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Zhu H, Zhu A, Golabek A, Du H, Roher A, Yu J, Soto C, Schmidt AM, Stern D, Kindy M. 2000. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med 6(6):643–651.

    Article  PubMed  CAS  Google Scholar 

  • Ye F, Foell D, Hirono KI, Vogl T, Rui C, Yu X, Watanabe S, Watanabe K, Uese K, Hashimoto I, Roth J, Ichida F, Miyawaki T. 2004. Neutrophil-derived S100A12 is profoundly upregulated in the early stage of acute Kawasaki disease. Am J Cardiol 94(6):840–844.

    Article  PubMed  CAS  Google Scholar 

  • Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H. 2003. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370(Pt 3):1097–1109.

    Article  PubMed  CAS  Google Scholar 

  • Yui S, Nakatani Y, Hunter MJ, Chazin WJ, Yamazaki M. 2002. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity. Mediators Inflamm 11(3):165–172.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang G, Ding Y, Wang Z, Barraclough R, Rudland PS, Fernig DG, Rao Z. 2003. The crystal structure at 2A resolution of the Ca 2+-binding protein S100P. J Mol Biol 325(4):785–794.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang Z, Ding Y, Wang G, Wang X, Bartlam M, Tang H, Liu Y, Jiang F, Barraclough R, Rudland PS, Rao Z. 2002a. Crystallization and preliminary crystallographic analysis of a metastasis-inducing protein, human S100A4. Acta Crystallogr D Biol Crystallogr 58(Pt 1):127–129.

    Google Scholar 

  • Zhang T, Woods TL, Elder JT. 2002b. Differential responses of S100A2 to oxidative stress and increased intracellular calcium in normal, immortalized, and malignant human keratinocytes. J Invest Dermatol 119(5):1196–1201.

    Article  CAS  Google Scholar 

  • Zhukova L, Zhukov I, Bal W, Wyslouch-Cieszynska A. 2004. Redox modifications of the C-terminal cysteine residue cause structural changes in S100A1 and S100B proteins. Biochim Biophys Acta 1742(1–3):191–201.

    Google Scholar 

  • Zimmer DB. 1991. Examination of the calcium-modulated protein S100 alpha and its target proteins in adult and developing skeletal muscle. Cell Motil Cytoskeleton 20(4):325–337.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Chaplin J, Baldwin A, Rast M. 2005. S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol (Noisy-le-grand) 51(2):201–214.

    CAS  Google Scholar 

  • Zimmer DB, Cornwall EH, Landar A, Song W. 1995. The S100 protein family: history, function, and expression. Brain Res Bull 37(4):417–429.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Cornwall EH, Reynolds PD, Donald CM. 1998. S100A1 regulates neurite organization, tubulin levels, and proliferation in PC12 cells. J Biol Chem 273(8):4705–4711.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Landar A. 1995. Analysis of S100A1 expression during skeletal muscle and neuronal cell differentiation. J Neurochem 64(6):2727–2736.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Van Eldik LJ. 1989. Analysis of the calcium-modulated proteins, S100 and calmodulin, and their target proteins during C6 glioma cell differentiation. J Cell Biol 108(1):141–151.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Wright Sadosky P, Weber DJ. 2003. Molecular mechanisms of S100-target protein interactions. Microsc Res Tech 60(6):552–559.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

HEIZMANN, C., ACKERMANN, G., GALICHET, A. (2007). Pathologies Involving the S100 Proteins and Rage. In: Carafoli, E., Brini, M. (eds) Calcium Signalling and Disease. Subcellular Biochemistry, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6191-2_5

Download citation

Publish with us

Policies and ethics