Skip to main content
Log in

A Role for the Endothelial Glycocalyx in Regulating Microvascular Permeability in Diabetes Mellitus

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diabetic angiopathy is a major cause of morbidity and mortality in diabetes mellitus. Endothelial dysfunction and associated alterations in blood flow, pressure and permeability are widely accepted phenomena in the diabetic milieu and are understood to lead to microangiopathy. Despite the clinical importance of diabetic microangiopathy, the mechanisms of pathogenesis remain elusive. In particular, much is yet to be understood about the nature of the putative increased permeability with respect to diabetes. Microvessel permeability is intrinsically difficult to measure and a surrogate (solute or solvent flux) is usually reported, the measurement of which is hampered by haemodynamic factors, such as flow rate, hydrostatic pressure gradient, solute concentration and surface area available for exchange. Very few studies describing the measurement of permeability with respect to diabetes have controlled for all these factors. As a result, the nature of the increased microvessel permeability in diabetes mellitus and indeed its causes are poorly understood. Recent studies have shown that hyperglycaemia can alter the glycocalyx structure, and parallel findings have shown that the apparent increase in permeability demonstrated in hyperglycaemia may be due to an increase in the permeability of the vessels to water, and not an increase in protein permeability, an effect attributable to altered glycocalyx. This review focuses on the current understanding of microvascular permeability in terms of the endothelial glycocalyx- fibre-matrix theory, those methods used to determine permeability in the context of diabetes, and the more recent developments in our understanding of elevated microvascular permeability in the diabetic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wild, S., et al. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053.

    Article  PubMed  Google Scholar 

  2. Amos, A., McCarty, D., & Zimmet, P. (1997). The rising global burden of diabetes and its complications: Estimates and rojections to the year 2010. Diabetic Medicine, 14(5), S1–S85.

    Article  PubMed  Google Scholar 

  3. Watkins, P. (2003). Cardiovascular disease, hypertension and lipids. BMJ, 326, 874–876.

    Article  PubMed  Google Scholar 

  4. Tooke, J. E. (1995). Microvascular function in human diabetes: A physiological perspective. Diabetes, 44(7), 721–726.

    Article  PubMed  CAS  Google Scholar 

  5. Creager, M., et al. (2003). Diabetes and vascular disease; Pathophysiology, clinical consequences and medical therapy. Circulation, 108, 1527–1532.

    Google Scholar 

  6. Ditzel, J. (1968). Functional microangiopathy in diabetes mellitus. Diabetes, 17, 388–397.

    PubMed  CAS  Google Scholar 

  7. Gundersen, J. (1974). Peripheral blood flow and metabolic control in juvenile diabetes. Diabetelogia, 10, 225–331.

    Article  CAS  Google Scholar 

  8. Parving, H., et al. (1976). The effect of metabolic regulation on microvascular permeability to small and large molecules in short-term juvenile diabetics. Diabetelogia, 12, 161–166.

    Article  CAS  Google Scholar 

  9. Rayman, G., Hassan, A., & Tooke, J. E. (1986). Blood flow in the skin of the foot related to posture in diabetes mellitus. British Medical Journal (Clinical Research Ed.), 292(6513), 87–90.

    Article  CAS  Google Scholar 

  10. Shore, A., Jaap, A., & JE, T. (1992). Capillary pressure in insulin dependent diabetic patients of long disease duration with and without microangiopathy. Diabetic Medicine, 9(2), S11.

    Google Scholar 

  11. Curry, F. R. (2005). Microvascular solute and water transport. Microcirculation, 12(1), 17–31.

    Article  PubMed  CAS  Google Scholar 

  12. Henry, C., & Duling, B. (1999). Permeation of the luminal capillary glycocalyx is determined by hyaluronan. American Journal of Physiology, 277, H508–H514.

    PubMed  CAS  Google Scholar 

  13. Pries, A., Secomb, T., & Gaehtgens, P. (2000). The endothelial surface layer. Pflugers Archiv, 440, 653–666.

    Article  PubMed  CAS  Google Scholar 

  14. Chambers, R., & Zweifach, B. (1947). Intracellular cement and capillary permeability. Physiological Reviews, 27, 436–463.

    CAS  PubMed  Google Scholar 

  15. Curry, F. E., & Michel, C. C. (1980). A fiber matrix model of capillary permeability. Microvascular Research, 20(1), 96–99.

    Article  PubMed  CAS  Google Scholar 

  16. Grotte, G. (1956). Passage of dextran molecules across the blood-lymph barrier. Acta Chirurgica Scandinavica Supplementum, 211, 1–84.

    PubMed  CAS  Google Scholar 

  17. Adamson, R. H. (1990). Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. Journal of Physiology, 428, 1–13.

    PubMed  CAS  Google Scholar 

  18. Squire, J. M., et al. (2001). Quasi-periodic substructure in the microvessel endothelial glycocalyx: A possible explanation for molecular filtering? Journal of Structural Biology, 136(3), 239–255.

    Article  PubMed  CAS  Google Scholar 

  19. Rostgaard, J., & Qvortrup, K. (1997). Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvascular Research, 53(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  20. Vink, H., & Duling, B. (2000). Capillary endothelial surface layer selectively reduces plasma solute distribution volume. American Journal of Physiology: Heart and Circulatory Physiology, 278, H285–H289.

    PubMed  CAS  Google Scholar 

  21. Miles, A., & Miles, E. (1952). Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea pigs. Journal of Physiology, 118, 228–257.

    PubMed  CAS  Google Scholar 

  22. Lawson, S., et al. (2005). Enhanced dermal and retinal vascular permeability in streptozotocin-induced type 1 diabetes in Wistar rats: Blockade with a selective bradykinin B1 receptor antagonist. Regulatory Peptides, 124, 221–224.

    Article  PubMed  CAS  Google Scholar 

  23. Xu, Q., Qaum, T., & Adamis, A. (2001). Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Investigative Ophthalmology & Visual Science, 42, 789–794.

    CAS  Google Scholar 

  24. Algenstaedt, P., et al. (2003). Microvascular alterations in diabetic mice correlate with the level of hyperglycaemia. Diabetes, 52, 542–549.

    Article  PubMed  CAS  Google Scholar 

  25. Lefrandt, J., et al. (2003). Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy. Diabetologia, 46(1), 40–47.

    PubMed  CAS  Google Scholar 

  26. Sandeman, D., Shore, A., & Tooke, J. (1992). Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. New England Journal of Medicine, 327, 760–764.

    Article  PubMed  CAS  Google Scholar 

  27. Fauchald, P., Norseth, J., & Jervell, J. (1985). Transcapillary colloid osmotic gradient, plasma volume and interstitial fluid volume in long-term type 1 (insulin-dependent) diabetes. Diabetes, 28, 269–273.

    CAS  Google Scholar 

  28. Michel, C. C., et al. (1974). A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Quarterly Journal of Experimental Physiology and Cognitive Medical Science, 59(4), 283–309.

    CAS  Google Scholar 

  29. Bates, D. O., & Curry, F. E. (1996). Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. American Journal of Physiology: Heart and Circulatory Physiology, 271(6), H2520–H2528.

    CAS  Google Scholar 

  30. Kim, M. H., Harris, N. R., & Tarbell, J. M. (2005). Regulation of hydraulic conductivity in response to sustained changes in pressure. American Journal of Physiology: Heart and Circulatory Physiology, 289(6), H2551–H2558.

    Article  PubMed  CAS  Google Scholar 

  31. Yuan, Y., et al. (1993). Permeability to albumin in isolated coronary venules. American Journal of Physiology, 265(2 Pt 2), H543–H552.

    PubMed  CAS  Google Scholar 

  32. Huxley, V. H., Curry, F. E., & Adamson, R. H. Quantitative fluorescence microscopy on single capillaries: Alpha-lactalbumin transport. American Journal of Physiology, 1987: H188–H197.

  33. Knudsen, S., T, et al. (2002). Macular edema reflects generalized vascular hyperpermeability in type 2 diabetic patients with retinopathy. Diabetes Care, 25(1), 2328–2334.

  34. Parving, H. H., et al. (1996). Macro-microangiopathy and endothelial dysfunction in NIDDM patients with and without diabetic nephropathy. Diabetologia, 39(12), 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  35. Vervoort, G., et al. (1999). Transcapillary escape rate of albumin is increased and related to haemodynamic changes in normo-albuminuric type 1 diabetic patients. Journal of Hypertension, 17(12), 1911–1916.

    Article  PubMed  CAS  Google Scholar 

  36. Bollinger, A., & Fagrell, B. (1990) Dynamic capillaroscopy with dyes (Fluorescence video microscopy). In: A. Bollinger & B. Fagrell (Eds.), Clinical capillaroscopy (pp. 31–52). Hogrefe & Huber.

  37. Bollinger, A., et al. (1982). Patterns of diffusion through skin capillaries in patients with long-term diabetes. New England Journal of Medicine, 307, 1305–1310.

    Article  PubMed  CAS  Google Scholar 

  38. Cunha-Vaz, J., et al. (1975). Early breakdown of the blood retinal barrier in diabetes. British Journal of Ophthalmology, 59, 649–656.

    PubMed  CAS  Google Scholar 

  39. Oomen, P., et al. (1999). Capillary permeability is increased in normo- and microalbuminuric Type 1 diabetic patients: amelioration by ACE-inhibition. European Journal of Clinical Investigation, 29, 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  40. Poulsen, H., & Nielsen, S. (1976). Water filtration of the forearm in short- and long-term diabetes mellitus. Diabetelogia, 12(5), 437–440.

    Article  CAS  Google Scholar 

  41. Poulsen, H. L. (1973). Subcutaneous interstitial fluid albumin concentration in long term diabetes mellitus. Scandinavian Journal of Laboratory and Clinical Investigation, 32, 167–173.

    CAS  Google Scholar 

  42. Yuan, S., et al. (2000). Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetes. Circulation Research, 87, 412–417.

    PubMed  CAS  Google Scholar 

  43. Williamson, J., et al. (1987). Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozocin-induced diabetes. Prevention by aldose reductase inhibitors and castration. Diabetes, 36(7), 813–821.

    Article  PubMed  CAS  Google Scholar 

  44. Pirart, J. (1978). Diabetes mellitus and its degenerative complications. A prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care, 1, 168–188, 252–263.

  45. DCCT, Diabetes Control and Complications Trial Research Group. (1995). The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes, 44, 968–983.

    Google Scholar 

  46. UKPDS, (UK Prospective Diabetes Study Group) (2000). Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. American Journal of Ophthalmology, 129, 704–705.

    Google Scholar 

  47. Rogers, D., et al. (1998). Effect of rapid normalization of plasma glucose levels on microvascular dysfunction and polyol metabolism in diabetic rats. Diabetes, 37(12), 1689–1694.

    Article  Google Scholar 

  48. Perrin, R., et al. (2007). Hyperglycaemia increases microvascular exchange by increasing convective water permeability. Microcirculation, in press.

  49. Zuurbier, C. J., et al. (2005). Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. Journal of Applied Physiology, 99(4), 1471–1476.

    Article  PubMed  Google Scholar 

  50. Hirase, T., et al. (1997). Occludin as a possible determinant of tight junction permeability in endothelial cells. Journal of Cell Science, 110(Pt 14), 1603–1613.

    PubMed  CAS  Google Scholar 

  51. Dejana, E., Spagnuolo, R., & Bazzoni, G. (2001). Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and Haemostasis, 86(1), 308–315.

    PubMed  CAS  Google Scholar 

  52. Andriopoulou, P., et al. (1999). Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(10), 2286–2297.

    PubMed  CAS  Google Scholar 

  53. Nieuwdorp, M., et al. (2006). Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes, 55(2), 480–486.

    Article  PubMed  CAS  Google Scholar 

  54. Knight, K. R., et al. (1987). Protein metabolism and fibrosis in expoerimental canine obstructive lymphoedema. Journal of Laboratory and Clinical Medicine, 110, 558–566.

    PubMed  CAS  Google Scholar 

  55. Williamson, J. R., & Kilo, C. (1980). Small-vessel disease: Diabetic microangiopathy. Angiology, 31(7), 448–454.

    Google Scholar 

  56. Zhang, X., Curry, F. R., & Weinbaum, S. (2006). Mechanism of osmotic flow in a periodic fiber array. American Journal of Physiology: Heart and Circulatory Physiology, 290(2), H844–H852.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Bates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, R.M., Harper, S.J. & Bates, D.O. A Role for the Endothelial Glycocalyx in Regulating Microvascular Permeability in Diabetes Mellitus. Cell Biochem Biophys 49, 65–72 (2007). https://doi.org/10.1007/s12013-007-0041-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0041-6

Keywords

Navigation