Skip to main content

Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK

  • Chapter
  • First Online:
AMP-activated Protein Kinase

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

This chapter summarizes AMPK function in the regulation of substrate and energy metabolism with the main emphasis on carbohydrate and lipid metabolism, protein turnover, mitochondrial biogenesis, and whole-body energy homeostasis. AMPK acts as whole-body energy sensor and integrates different signaling pathway to meet both cellular and body energy requirements while inhibiting energy-consuming processes but also activating energy-producing ones. AMPK mainly promotes glucose and fatty acid catabolism, whereas it prevents protein, glycogen, and fatty acid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS, Wakil SJ (1995) Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci USA 92(9):4011–4015, Pubmed Central PMCID: 42092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzamora R, Gong F, Rondanino C, Lee JK, Smolak C, Pastor-Soler NM et al (2010) AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 299(6):F1308–F1319, Pubmed Central PMCID: 3006313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An H, He L (2016) Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol 228(3):R97–R106, Epub 2016/01/09. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An D, Kewalramani G, Qi D, Pulinilkunnil T, Ghosh S, Abrahani A et al (2005) beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. Am J Physiol Endocrinol Metab 288(6):E1120–E1127, Epub 2005/02/03. eng

    Article  CAS  PubMed  Google Scholar 

  • Awazawa M, Ueki K, Inabe K, Yamauchi T, Kaneko K, Okazaki Y et al (2009) Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun 382(1):51–56, Epub 2009/03/04. eng

    Article  CAS  PubMed  Google Scholar 

  • Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C et al (2005) Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 11(16):5784–5792, Epub 2005/08/24. eng

    Article  CAS  PubMed  Google Scholar 

  • Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406, Pubmed Central PMCID: 4074565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskin KK, Taegtmeyer H (2011) AMP-activated protein kinase regulates E3 ligases in rodent heart. Circ Res 109(10):1153–1161, Pubmed Central PMCID: 3254015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauloye C, Marsin AS, Bertrand L, Vanoverschelde JL, Rider MH, Hue L (2002) The stimulation of heart glycolysis by increased workload does not require AMP-activated protein kinase but a wortmannin-sensitive mechanism. FEBS Lett 531(2):324–328

    Article  CAS  PubMed  Google Scholar 

  • Beg ZH, Allmann DW, Gibson DM (1973) Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem Biophys Res Commun 54(4):1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Beg ZH, Stonik JA, Brewer HB Jr (1979) Characterization and regulation of reductase kinase, a protein kinase that modulates the enzymic activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci USA 76(9):4375–4379, Pubmed Central PMCID: 411577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron R, Russell RR 3rd, Young LH, Ren JM, Marcucci M, Lee A et al (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276(5 Pt 1):E938–E944

    CAS  PubMed  Google Scholar 

  • Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U et al (2006) AMP-activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4-2. J Biol Chem 281(36):26159–26169

    Article  CAS  PubMed  Google Scholar 

  • Bickerton AS, Roberts R, Fielding BA, Hodson L, Blaak EE, Wagenmakers AJ et al (2007) Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56(1):168–176, Epub 2006/12/29. eng

    Article  CAS  PubMed  Google Scholar 

  • Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277(27):23977–23980

    Article  CAS  PubMed  Google Scholar 

  • Browne GJ, Finn SG, Proud CG (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem 279(13):12220–12231

    Article  CAS  PubMed  Google Scholar 

  • Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K et al (2009) Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58(3):550–558, Pubmed Central PMCID: 2646053, Epub 2008/12/17. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruss MD, Arias EB, Lienhard GE, Cartee GD (2005) Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060, Pubmed Central PMCID: 3616311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223(2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Carling D, Clarke PR, Zammit VA, Hardie DG (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem/FEBS 186(1-2):129–136

    Article  CAS  Google Scholar 

  • Carlson CA, Kim KH (1973) Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248(1):378–380

    CAS  PubMed  Google Scholar 

  • Chen S, Murphy J, Toth R, Campbell DG, Morrice NA, Mackintosh C (2008) Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem J 409(2):449–459, Epub 2007/11/13. eng

    Article  CAS  PubMed  Google Scholar 

  • Chopra I, Li HF, Wang H, Webster KA (2012) Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 55(3):783–794, Pubmed Central PMCID: 4648248

    Article  CAS  PubMed  Google Scholar 

  • Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA (2000) Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275(42):32523–32529, Epub 2000/07/27. eng

    Article  CAS  PubMed  Google Scholar 

  • Coven DL, Hu X, Cong L, Bergeron R, Shulman GI, Hardie DG et al (2003) Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285(3):E629–E636, Epub 2003/05/22. eng

    Article  CAS  PubMed  Google Scholar 

  • De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  • Destefano MA, Jacinto E (2013) Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2). Biochem Soc Trans 41(4):896–901, Epub 2013/07/19. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubbelhuis PF, Meijer AJ (2002) Hepatic amino acid-dependent signaling is under the control of AMP-dependent protein kinase. FEBS Lett 521(1-3):39–42

    Article  CAS  PubMed  Google Scholar 

  • Dunlop EA, Tee AR (2013) The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans 41(4):939–943

    Article  CAS  PubMed  Google Scholar 

  • Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86(11):839–848

    Article  CAS  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461, Pubmed Central PMCID: 3030664

    Article  CAS  PubMed  Google Scholar 

  • Ferrer A, Caelles C, Massot N, Hegardt FG (1985) Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem Biophys Res Commun 132(2):497–504

    Article  CAS  PubMed  Google Scholar 

  • Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120(7):2355–2369, Pubmed Central PMCID: 2898585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraghty KM, Chen S, Harthill JE, Ibrahim AF, Toth R, Morrice NA et al (2007) Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem J 407(2):231–241, Pubmed Central PMCID: 2049023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginion A, Auquier J, Benton CR, Mouton C, Vanoverschelde JL, Hue L et al (2011) Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 301(2):H469–H477

    Article  CAS  PubMed  Google Scholar 

  • Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90(1):367–417

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zheng X, Liu J, Yin Z (2016) Geniposide suppresses hepatic glucose production via AMPK in HepG2 cells. Biol Pharm Bull 39:484–491, Epub 2016/02/03. Eng

    Article  CAS  PubMed  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226, Pubmed Central PMCID: 2674027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habets DD, Coumans WA, Voshol PJ, den Boer MA, Febbraio M, Bonen A et al (2007) AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 355(1):204–210

    Article  CAS  PubMed  Google Scholar 

  • Habets DD, Coumans WA, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B et al (2009) Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta 1791(3):212–219

    Article  CAS  PubMed  Google Scholar 

  • Halse R, Fryer LG, McCormack JG, Carling D, Yeaman SJ (2003) Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes 52(1):9–15, Epub 2002/12/28. eng

    Article  CAS  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–735

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30(Pt 6):1064–1070, Epub 2002/11/21. eng

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase – development of the energy sensor concept. J Physiol 574(Pt 1):7–15, Pubmed Central PMCID: 1817788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47(8):1369–1373

    CAS  PubMed  Google Scholar 

  • Holmes B, Dohm GL (2004) Regulation of GLUT4 gene expression during exercise. Med Sci Sports Exerc 36(7):1202–1206, Epub 2004/07/06. eng

    Article  CAS  PubMed  Google Scholar 

  • Holmes BF, Sparling DP, Olson AL, Winder WW, Dohm GL (2005) Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 289(6):E1071–E1076, Epub 2005/08/18. eng

    Article  CAS  PubMed  Google Scholar 

  • Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L et al (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12(16):1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Ingebritsen TS, Parker RA, Gibson DM (1981) Regulation of liver hydroxymethylglutaryl-CoA reductase by a bicyclic phosphorylation system. J Biol Chem 256(3):1138–1144

    CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104(29):12017–12022, Pubmed Central PMCID: 1924552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276(50):46912–46916

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P et al (2004a) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen SB, Nielsen JN, Birk JB, Olsen GS, Viollet B, Andreelli F et al (2004b) The alpha2-5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53(12):3074–3081

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295, Pubmed Central PMCID: 2846630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane S, Sano H, Liu SC, Asara JM, Lane WS, Garner CC et al (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 277(25):22115–22118

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141, Pubmed Central PMCID: 3987946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W et al (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152(1-2):290–303, Pubmed Central PMCID: 3587159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjobsted R, Treebak JT, Fentz J, Lantier L, Viollet B, Birk JB et al (2015) Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes 64(6):2042–2055

    Article  PubMed  CAS  Google Scholar 

  • Koay A, Woodcroft B, Petrie EJ, Yue H, Emanuelle S, Bieri M et al (2010) AMPK beta subunits display isoform specific affinities for carbohydrates. FEBS Lett 584(15):3499–3503

    Article  CAS  PubMed  Google Scholar 

  • Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F et al (2008) The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One 3(3):e1797, Pubmed Central PMCID: 2258435, Epub 2008/03/13. eng

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonen DP, Glatz JF, Bonen A, Luiken JJ (2005) Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta 1736(3):163–180, Epub 2005/10/04. eng

    Article  CAS  PubMed  Google Scholar 

  • Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE et al (2006) Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55(7):2067–2076, Epub 2006/06/29. eng

    Article  CAS  PubMed  Google Scholar 

  • Krause U, Bertrand L, Hue L (2002) Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem/FEBS 269(15):3751–3759

    Article  CAS  Google Scholar 

  • Krawiec BJ, Nystrom GJ, Frost RA, Jefferson LS, Lang CH (2007) AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am J Physiol Endocrinol Metab 292(6):E1555–E1567

    Article  CAS  PubMed  Google Scholar 

  • Kreuz S, Schoelch C, Thomas L, Rist W, Rippmann JF, Neubauer H (2009) Acetyl-CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetes. Diabetes Metab Res Rev 25(6):577–586

    Article  CAS  PubMed  Google Scholar 

  • Lage R, Dieguez C, Vidal-Puig A, Lopez M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14(12):539–549

    Article  CAS  PubMed  Google Scholar 

  • Lantier L, Fentz J, Mounier R, Leclerc J, Treebak JT, Pehmoller C et al (2014) AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J 28(7):3211–3224

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS et al (2006) AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun 340(1):291–295

    Article  CAS  PubMed  Google Scholar 

  • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106(7):847–856, Pubmed Central PMCID: 517815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B et al (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388, Pubmed Central PMCID: 3086578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Gauthier MS, Sun L, Ruderman N, Lodish H (2010) Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. FASEB J 24(11):4229–4239, Pubmed Central PMCID: 2974418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y et al (2002) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51(10):3113–3119, Epub 2002/09/28. eng

    Article  CAS  PubMed  Google Scholar 

  • Luiken JJ, Koonen DP, Coumans WA, Pelsers MM, Binas B, Bonen A et al (2003) Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice. Lipids 38(4):491–496, Epub 2003/07/10. eng

    Article  CAS  PubMed  Google Scholar 

  • Madsen A, Bozickovic O, Bjune JI, Mellgren G, Sagen JV (2015) Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Sci Rep 5:16430, Pubmed Central PMCID: 4637908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274, Pubmed Central PMCID: 2756685, Epub 2007/07/03. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF et al (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10(20):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Marsin AS, Bouzin C, Bertrand L, Hue L (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277(34):30778–30783, Epub 2002/06/18. eng

    Article  CAS  PubMed  Google Scholar 

  • McGee SL, Hargreaves M (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53(5):1208–1214

    Article  CAS  PubMed  Google Scholar 

  • McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE et al (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57(4):860–867

    Article  CAS  PubMed  Google Scholar 

  • Middelbeek RJ, Chambers MA, Tantiwong P, Treebak JT, An D, Hirshman MF et al (2013) Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle. Nutr Diabetes 3:e74, Pubmed Central PMCID: 3697402, Epub 2013/06/12. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982):569–574

    Article  CAS  PubMed  Google Scholar 

  • Moreno D, Viana R, Sanz P (2009) Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase. Int J Biochem Cell Biol 41(12):2431–2439

    Article  CAS  PubMed  Google Scholar 

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295

    Article  CAS  PubMed  Google Scholar 

  • Munday MR, Campbell DG, Carling D, Hardie DG (1988) Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem/FEBS 175(2):331–338

    Article  CAS  Google Scholar 

  • Muoio DM, Seefeld K, Witters LA, Coleman RA (1999) AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 338(Pt 3):783–791, Pubmed Central PMCID: 1220117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nada MA, Abdel-Aleem S, Schulz H (1995) On the rate-limiting step in the beta-oxidation of polyunsaturated fatty acids in the heart. Biochim Biophys Acta 1255(3):244–250, Epub 1995/04/06. eng

    Article  PubMed  Google Scholar 

  • Oligschlaeger Y, Miglianico M, Chanda D, Scholz R, Thali RF, Tuerk R et al (2015) The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J Biol Chem 290(18):11715–11728, Pubmed Central PMCID: 4416872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD et al (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci USA 108(38):16092–16097, Pubmed Central PMCID: 3179037

    Article  PubMed  PubMed Central  Google Scholar 

  • Pehmoller C, Treebak JT, Birk JB, Chen S, Mackintosh C, Hardie DG et al (2009) Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am J Physiol Endocrinol Metab 297(3):E665–E675, Pubmed Central PMCID: 2739697, Epub 2009/06/18. eng

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peth A, Nathan JA, Goldberg AL (2013) The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome. J Biol Chem 288(40):29215–29222, Pubmed Central PMCID: 3790020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC et al (2003) AMPK β subunit targets metabolic stress sensing to glycogen. Curr Biol 13(10):867–871

    Article  CAS  PubMed  Google Scholar 

  • Ronnebaum SM, Patterson C, Schisler JC (2014) Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 28(10):1602–1615, Pubmed Central PMCID: 4179629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose AJ, Jeppesen J, Kiens B, Richter EA (2009) Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(5):R1228–R1237, Epub 2009/08/14. eng

    Article  CAS  PubMed  Google Scholar 

  • Rowland AF, Fazakerley DJ, James DE (2011) Mapping insulin/GLUT4 circuitry. Traffic 12(6):672–681, Epub 2011/03/16. eng

    Article  CAS  PubMed  Google Scholar 

  • Sadler JB, Bryant NJ, Gould GW (2015) Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell 26(3):530–536, Pubmed Central PMCID: 4310743, Epub 2014/12/17. eng

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A et al (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24(10):1810–1820, Pubmed Central PMCID: 1142598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53(4):709–717, Pubmed Central PMCID: 3307647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS et al (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278(17):14599–14602

    Article  CAS  PubMed  Google Scholar 

  • Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JF et al (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53(10):2209–2219, Pubmed Central PMCID: 2931635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646, Pubmed Central PMCID: 3074427, Epub 2005/11/26. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solaz-Fuster MC, Gimeno-Alcaniz JV, Ros S, Fernandez-Sanchez ME, Garcia-Fojeda B, Criado Garcia O et al (2008) Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway. Hum Mol Genet 17(5):667–678

    Article  CAS  PubMed  Google Scholar 

  • Suwa M, Nakano H, Kumagai S (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol 95(3):960–968

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296(6):E1195–E1209, Pubmed Central PMCID: 2692402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan VP, Miyamoto S (2016) Nutrient-sensing mTORC1: integration of metabolic and autophagic signals. J Mol Cell Cardiol 95:31–41

    Article  CAS  PubMed  Google Scholar 

  • Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296(2):350–354

    Article  CAS  PubMed  Google Scholar 

  • Tong JF, Yan X, Zhu MJ, Du M (2009) AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J Cell Biochem 108(2):458–468

    Article  CAS  PubMed  Google Scholar 

  • Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20(5):1868–1876, Pubmed Central PMCID: 85369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Xu J, Song P, Viollet B, Zou MH (2009) In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 58(8):1893–1901, Pubmed Central PMCID: 2712774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanobe H (2002) Leptin directly acts within the hypothalamus to stimulate gonadotropin-releasing hormone secretion in vivo in rats. J Physiol 545(Pt 1):255–268, Pubmed Central PMCID: 2290656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52(6):1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang S, Viollet B, Zou MH (2012) Regulation of the proteasome by AMPK in endothelial cells: the role of O-GlcNAc transferase (OGT). PLoS One 7(5):e36717, Pubmed Central PMCID: 3345026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Yeh LA, Lee KH, Kim KH (1980) Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem 255(6):2308–2314

    CAS  PubMed  Google Scholar 

  • Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur AC et al (2006) Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol 291(6):H2875–H2883, Epub 2006/08/01. eng

    Article  CAS  PubMed  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Guo H, Zhang CS, Lin SY, Yin Z, Peng Y et al (2013) AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab 18(4):546–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL et al (2014) The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20(3):526–540

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99(25):15983–15987, Pubmed Central PMCID: 138551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angin, Y., Beauloye, C., Horman, S., Bertrand, L. (2016). Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_2

Download citation

Publish with us

Policies and ethics