Skip to main content
Log in

In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The aim of the study was to examine the protective effects and possible mechanism of gossypin against isoproterenol (ISO)-mediated myocardial damage in vivo and H9c2 cell damage in vitro. H9c2 cells were categorized into five groups. Viability was evaluated with MTT and LDH release in H9c2 cells. Apoptotic parameter analysis was performed with cytochrome c (Cyt-c), caspase-3 (CASP-3), and BCL2/Bax mRNA expression levels. In vivo, gossypin was administered orally to mice at doses of 5, 10, and 20 mg/kg for 7 days. ISO groups were injected with isoproterenol (150 mg/kg) subcutaneously (on 8th and 9th) for 2 days. Afterward, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) levels and Troponin-I (Tn-I) amount from their serum, oxidative stress parameters superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1 β), and NF-kB mRNA expression levels with inflammatory markers from heart tissue were evaluated. In addition, IL-1B, BCL-2, and cas-3 immunohistochemical staining was performed from heart tissue and TNF-a level was measured by ELISA method. Administration of Gossypin protected the cells by dose-dependent, eliminating the reduced cell viability and increased LDH release of ISO in H9c2 cells. In mice serum analyses, increased LDH, CK-MB levels, and Tn-I levels were normalized by gossypin. ISO administration in heart tissue is regulated by gossypin with increased SOD activity, GSH amount, TNF-α, IL-6, IL-1β, and NF-kB mRNA expression levels and decreased MDA amount. Overall, the present results demonstrated that gossypin has a potential cardioprotective treatment for ischemic heart disease on in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data that support the plots within this publication and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yang, H., Carasso, S., Woo, A., Jamorski, M., Nikonova, A., Wigle, E. D., & Rakowski, H. (2010). Hypertrophy pattern and regional myocardial mechanics are related in septal and apical hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography, 23, 1081–1089.

    Article  PubMed  Google Scholar 

  2. Chiong, M., Wang, Z. V., Pedrozo, Z., Cao, D. J., Troncoso, R., Ibacache, M., Criollo, A., Nemchenko, A., Hill, J. A., & Lavandero, S. (2011). Cardiomyocyte death: Mechanisms and translational implications. Cell Death Disease, 2, e244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ong, S. B., Hernandez-Resendiz, S., Crespo-Avilan, G. E., Mukhametshina, R. T., Kwek, X. Y., Cabrera-Fuentes, H. A., & Hausenloy, D. J. (2018). Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacology & Therapeutics, 186, 73–87.

    Article  CAS  Google Scholar 

  4. Sawyer, D. B., Siwik, D. A., Xiao, L., Pimentel, D. R., Singh, K., & Colucci, W. S. (2002). Role of oxidative stress in myocardial hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 34, 379–388.

    Article  CAS  PubMed  Google Scholar 

  5. Neri, M., Fineschi, V., Di Paolo, M., Pomara, C., Riezzo, I., Turillazzi, E., & Cerretani, D. (2015). Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 13, 26–36.

    Article  CAS  PubMed  Google Scholar 

  6. Cinar, I., Halici, Z., Dincer, B., Sirin, B., & Cadirci, E. (2020). The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Human and Experimental Toxicology, 1, 96032712.

    Google Scholar 

  7. Krishnamurthy, P., Subramanian, V., Singh, M., & Singh, K. (2007). Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension, 49, 865–872.

    Article  CAS  PubMed  Google Scholar 

  8. Gabriel, A. S., Martinsson, A., Wretlind, B., & Ahnve, S. (2004). IL-6 levels in acute and post myocardial infarction: Their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. European Journal of Internal Medicine, 15, 523–528.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, J., Wang, Z., & Chen, D. L. (2017). Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomedicine & Pharmacotherapy, 93, 1343–1357.

    Article  CAS  Google Scholar 

  10. Karin, M., & Delhase, M. (2000). The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Seminars in Immunology, 12, 85–98.

    Article  CAS  PubMed  Google Scholar 

  11. Xu, F., Sun, S., Wang, X., Ni, E., Zhao, L., & Zhu, W. (2017). GRK2 mediates arginine vasopressin-induced interleukin-6 production via nuclear factor-kappaB signaling neonatal rat cardiac fibroblast. Molecular Pharmacology, 92, 278–284.

    Article  CAS  PubMed  Google Scholar 

  12. Du, G., Sun, L., Zhao, R., Du, L., Song, J., Zhang, L., He, G., Zhang, Y., & Zhang, J. (2016). Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacology & Therapeutics, 162, 23–34.

    Article  CAS  Google Scholar 

  13. Sedighi, M., Sewell, R. D. E., Nazari, A., Abbaszadeh, S., Cheraghi, M., Amini, A., Heydari, Z., & Rafieian-Kopaei, M. (2019). A review on the most important medicinal plants effective in cardiac ischemia-reperfusion injury. Current Pharmaceutical Design, 25, 352–358.

    Article  CAS  PubMed  Google Scholar 

  14. Cinar, I. (2020). Apoptosis-inducing activity and antiproliferative effect of gossypin on PC-3 prostate cancer cells. Anti-Cancer Agents in Medicinal Chemistry, 21(4), 445–450.

    Article  Google Scholar 

  15. Viswanathan, S., Thirugnanasambantham, P., Ramaswamy, S., & Bapna, J. S. (1993). A study on the role of cholinergic and gamma amino butyric acid systems in the anti-nociceptive effect of gossypin. Clinical and Experimental Pharmacology and Physiology, 20, 193–196.

    Article  CAS  PubMed  Google Scholar 

  16. Cinar, I., Sirin, B., Aydin, P., Toktay, E., Cadirci, E., Halici, I., & Halici, Z. (2019). Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sciences, 221, 327–334.

    Article  CAS  PubMed  Google Scholar 

  17. Gautam, P., & Flora, S. J. (2010). Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition, 26, 563–570.

    Article  CAS  PubMed  Google Scholar 

  18. Ugan, R. A., Cadirci, E., Halici, Z., Toktay, E., & Cinar, I. (2018). The role of urotensin-II and its receptors in sepsis-induced lung injury under diabetic conditions. European Journal of Pharmacology, 818, 457–469.

    Article  CAS  PubMed  Google Scholar 

  19. Cadirci, E., Ugan, R. A., Dincer, B., Gundogdu, B., Cinar, I., Akpinar, E., & Halici, Z. (2019). Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 135–145.

    Article  CAS  PubMed  Google Scholar 

  20. Lobo Filho, H. G., Ferreira, N. L., Sousa, R. B., Carvalho, E. R., Lobo, P. L., & Lobo Filho, J. G. (2011). Experimental model of myocardial infarction induced by isoproterenol in rats. Revista Brasileira de Cirurgia Cardiovascular, 26, 469–476.

    PubMed  Google Scholar 

  21. Granata, R., Trovato, L., Gallo, M. P., Destefanis, S., Settanni, F., Scarlatti, F., Brero, A., Ramella, R., Volante, M., Isgaard, J., Levi, R., Papotti, M., Alloatti, G., & Ghigo, E. (2009). Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart. Cardiovascular Research, 83, 303–312.

    Article  CAS  PubMed  Google Scholar 

  22. Zaugg, M., Xu, W., Lucchinetti, E., Shafiq, S. A., Jamali, N. Z., & Siddiqui, M. A. (2000). Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation, 102, 344–350.

    Article  CAS  PubMed  Google Scholar 

  23. Ning, B. B., Zhang, Y., Wu, D. D., Cui, J. G., Liu, L., Wang, P. W., Wang, W. J., Zhu, W. L., Chen, Y., & Zhang, T. (2017). Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacologica Sinica, 38, 331–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahu, B. D., Putcha, U. K., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2014). Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice. Molecular and Cellular Biochemistry, 394, 163–176.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, H. J., Chen, R. C., Sun, G. B., Yang, L. P., Zhu, Y. D., Xu, X. D., & Sun, X. B. (2018). Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. Phytomedicine, 40, 88–97.

    Article  CAS  PubMed  Google Scholar 

  26. Meeran, M. F., & Prince, P. S. (2012). Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol-induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 26, 368–373.

    Article  PubMed  Google Scholar 

  27. Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism Clinical and Experimental, 62, 52–61.

    Article  CAS  PubMed  Google Scholar 

  28. Evran, B., Karpuzoglu, H., Develi, S., Kalaz, E. B., Soluk-Tekkesin, M., Olgac, V., Dogru-Abbasoglu, S., & Uysal, M. (2014). Effects of carnosine on prooxidant-antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacological Reports, 66, 81–86.

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez, S. P., Nguyen, M., Yow, T. T., Chu, C., Johnston, G. A., Hanrahan, J. R., & Chebib, M. (2009). The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochemical Research, 34, 1867–1875.

    Article  CAS  PubMed  Google Scholar 

  30. Thangaiyan, R., Robert, B. M., Arjunan, S., Govindasamy, K., & Nagarajan, R. P. (2018). Preventive effect of apigenin against isoproterenol-induced apoptosis in cardiomyoblasts. Journal of Biochemical and Molecular Toxicology, 32, e22213.

    Article  PubMed  Google Scholar 

  31. Konukoglu, D., Serin, O., Demiriz Kemerli, G., Serin, E., Hayirhoglu, A., & Oner, B. (1998). A study on the carotid artery intima-media thickness and its association with lipid peroxidation. Clinica Chimica Acta, 277, 91–98.

    Article  CAS  Google Scholar 

  32. Hanukoglu, I. (2006). Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metabolism Reviews, 38, 171–196.

    Article  CAS  PubMed  Google Scholar 

  33. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9–19.

    Article  CAS  Google Scholar 

  34. Yilmaz, S., Atessahin, A., Sahna, E., Karahan, I., & Ozer, S. (2006). Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology, 218, 164–171.

    Article  CAS  PubMed  Google Scholar 

  35. Gautam, A., & Vijayaraghavan, R. (2007). Prophylactic effect of gossypin against percutaneously administered sulfur mustard. Biomedical and Environmental Sciences, 20, 250–259.

    CAS  PubMed  Google Scholar 

  36. Zhao, L., Wu, D., Sang, M., Xu, Y., Liu, Z., & Wu, Q. (2017). Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-kappaB and JAK/STAT signaling pathways in rats. International Immunopharmacology, 48, 102–109.

    Article  CAS  PubMed  Google Scholar 

  37. Baldissera, M. D., Souza, C. F., Grando, T. H., Stefani, L. M., & Monteiro, S. G. (2017). beta-caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: The involvement of cardiac oxidative damage. Chemico-Biological Interactions, 270, 9–14.

    Article  CAS  PubMed  Google Scholar 

  38. Hu, K., Gong, X., Ai, Q., Lin, L., Dai, J., Cai, L., Jiang, R., Ge, P., & Zhang, L. (2017). Endogenous AMPK acts as a detrimental factor in fulminant hepatitis via potentiating JNK-dependent hepatocyte apoptosis. Cell Death Disease, 8, e2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campbell, K. J., & Tait, S. W. G. (2018). Targeting BCL-2 regulated apoptosis in cancer. Open Biology, 8, 15002.

    Article  Google Scholar 

  40. Maes, M. E., Schlamp, C. L., & Nickells, R. W. (2017). BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Progress in Retinal and Eye Research, 57, 1–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cui, C., Cui, N., Wang, P., Song, S., Liang, H., & Ji, A. (2015). Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus against PC12 hypoxia/reoxygenation injury by inhibition of the MAPK signaling pathway. Cellular and Molecular Neurobiology, 35, 1081–1092.

    Article  CAS  PubMed  Google Scholar 

  42. Yan, S. H., Zhao, N. W., Geng, Z. R., Shen, J. Y., Liu, F. M., Yan, D., Zhou, J., Nie, C., Huang, C. C., & Fang, Z. Y. (2018). Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radical Biology & Medicine, 115, 191–201.

    Article  CAS  Google Scholar 

  43. Wang, L., Wang, X., Chen, H., Zu, X., Ma, F., Liu, K., Bode, A. M., Dong, Z., & Kim, D. J. (2019). Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytotherapy Research, 33, 640–650.

    CAS  PubMed  Google Scholar 

  44. Bhaskaran, S., Dileep, K. V., Deepa, S. S., Sadasivan, C., Klausner, M., Krishnegowda, N. K., Tekmal, R. R., VandeBerg, J. L., & Nair, H. B. (2013). Gossypin as a novel selective dual inhibitor of v-raf murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma. Molecular Cancer Therapeutics, 12, 361–372.

    Article  CAS  PubMed  Google Scholar 

  45. Kunnumakkara, A. B., Nair, A. S., & Ahn, K. S. (2013). Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappa B activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis (vol 109, pg 5112, 2007). Blood, 122, 1327–1328.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IC and MY conceptualized and designed the research. TT, ETPB, RAU, and HH performed most of the experiments and analyzed the data with the help from IC and MY. IC and MY wrote the manuscript.

Corresponding author

Correspondence to Irfan Cinar.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: Jianyong Ma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cinar, I., Yayla, M., Tavaci, T. et al. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol 22, 52–62 (2022). https://doi.org/10.1007/s12012-021-09698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09698-3

Keywords

Navigation