Skip to main content

Advertisement

Log in

Microarray and Co-expression Network Analysis of Genes Associated with Acute Doxorubicin Cardiomyopathy in Mice

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Clinical use of doxorubicin (DOX) in cancer therapy is limited by its dose-dependent cardiotoxicity. But molecular mechanisms underlying this phenomenon have not been well defined. This study was to investigate the effect of DOX on the changes of global genomics in hearts. Acute cardiotoxicity was induced by giving C57BL/6J mice a single intraperitoneal injection of DOX (15 mg/kg). Cardiac function and apoptosis were monitored using echocardiography and TUNEL assay at days 1, 3 and 5. Myocardial glucose and ATP levels were measured. Microarray assays were used to screen gene expression profiles in the hearts at day 5, and the results were confirmed with qPCR analysis. DOX administration caused decreased cardiac function, increased cardiomyocyte apoptosis and decreased glucose and ATP levels. Microarrays showed 747 up-regulated genes and 438 down-regulated genes involved in seven main functional categories. Among them, metabolic pathway was the most affected by DOX. Several key genes, including 2,3-bisphosphoglycerate mutase (Bpgm), hexokinase 2, pyruvate dehydrogenase kinase, isoenzyme 4 and fructose-2,6-bisphosphate 2-phosphatase, are closely related to glucose metabolism. Gene co-expression networks suggested the core role of Bpgm in DOX cardiomyopathy. These results obtained in mice were further confirmed in cultured cardiomyocytes. In conclusion, genes involved in glucose metabolism, especially Bpgm, may play a central role in the pathogenesis of DOX-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu, W., Shou, W., Payne, R. M., Caldwell, R., & Field, L. J. (2008). A mouse model for juvenile doxorubicin-induced cardiac dysfunction. Pediatric Research, 64(5), 488–494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41(3), 389–405.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18(11), 1639–1642.

    Article  PubMed  Google Scholar 

  4. Shi, Y., Moon, M., Dawood, S., McManus, B., & Liu, P. P. (2011). Mechanisms and management of doxorubicin cardiotoxicity. Herz, 36(4), 296–305.

    Article  CAS  PubMed  Google Scholar 

  5. Zeng, Y., Wang, H. X., Guo, S. B., Yang, H., Zeng, X. J., Fang, Q., et al. (2013). Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes. PLoS One, 8(1), e53831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Kang, Y. M., Tian, C., Zeng, Y., Jia, L. X., Ma, X., et al. (2011). Overexpression of Nrdp1 in the heart exacerbates doxorubicin-induced cardiac dysfunction in mice. PLoS One, 6(6), e21104. doi:10.1371/journal.pone.0021104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ashour, A. E., Sayed-Ahmed, M. M., Abd-Allah, A. R., Korashy, H. M., Maayah, Z. H., Alkhalidi, H., et al. (2012). Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats. Oxidative Medicine and Cellular Longevity, 2012, 434195.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Berthiaume, J. M., & Wallace, K. B. (2007). Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment. Cardiovascular Toxicology, 7(3), 178–191. doi:10.1007/s12012-007-0026-0.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, K. L., Rosenzweig, B. A., Zhang, J., Knapton, A. D., Honchel, R., Lipshultz, S. E., et al. (2010). Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 66(2), 303–314. doi:10.1007/s00280-009-1164-9.

    Article  CAS  PubMed  Google Scholar 

  10. Tokarska-Schlattner, M., Lucchinetti, E., Zaugg, M., Kay, L., Gratia, S., Guzun, R., et al. (2010). Early effects of doxorubicin in perfused heart: Transcriptional profiling reveals inhibition of cellular stress response genes. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298(4), R1075–R1088. doi:10.1152/ajpregu.00360.2009.

    CAS  PubMed  Google Scholar 

  11. Trivedi, P. P., Kushwaha, S., Tripathi, D. N., & Jena, G. B. (2011). Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat. Cardiovascular Toxicology, 11(3), 215–225. doi:10.1007/s12012-011-9114-2.

    Article  CAS  PubMed  Google Scholar 

  12. Santacruz, L., Darrabie, M. D., Mantilla, J. G., Mishra, R., Feger, B. J., & Jacobs, D. O. (2014). Creatine supplementation reduces doxorubicin-induced cardiomyocellular injury. Cardiovascular Toxicology,. doi:10.1007/s12012-014-9283-x.

    Google Scholar 

  13. Sharma, R., Singhal, S. S., Cheng, J., Yang, Y., Sharma, A., Zimniak, P., et al. (2001). RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes. Archives of Biochemistry and Biophysics, 391(2), 171–179. doi:10.1006/abbi.2001.2395.

    Article  CAS  PubMed  Google Scholar 

  14. Tan, G., Lou, Z., Liao, W., Zhu, Z., Dong, X., Zhang, W., et al. (2011). Potential biomarkers in mouse myocardium of doxorubicin-induced cardiomyopathy: A metabonomic method and its application. PLoS One, 6(11), e27683.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zordoky, B. N., Anwar-Mohamed, A., Aboutabl, M. E., & El-Kadi, A. O. (2010). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology, 242(1), 38–46. doi:10.1016/j.taap.2009.09.012.

    Article  CAS  PubMed  Google Scholar 

  16. Pointon, A. V., Walker, T. M., Phillips, K. M., Luo, J., Riley, J., Zhang, S. D., et al. (2010). Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One, 5(9), e12733.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Li, H. H., Kedar, V., Zhang, C., McDonough, H., Arya, R., Wang, D. Z., et al. (2004). Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. Journal of Clinical Investigation, 114(8), 1058–1071. doi:10.1172/jci22220.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yang, D., Zeng, Y., Tian, C., Liu, J., Guo, S. B., Zheng, Y. H., et al. (2010). Transcriptomic analysis of mild hypothermia-dependent alterations during endothelial reperfusion injury. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 25(6), 605–614.

    Article  CAS  Google Scholar 

  19. Zhang, J. S., Zhang, Y. L., Wang, H. X., Xia, Y. L., Wang, L., Jiang, Y. N., et al. (2014). Identification of genes related to the early stage of Angiotensin II-induced acute renal injury by microarray and integrated gene network analysis. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 34(4), 1137–1151. doi:10.1159/000366327.

    Article  CAS  Google Scholar 

  20. The Gene Ontology (GO) project in 2006. (2006). Nucleic Acids Research, 34(Database issue), D322–D326.

  21. Dupuy, D., Bertin, N., Hidalgo, C. A., Venkatesan, K., Tu, D., Lee, D., et al. (2007). Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 25(6), 663–668.

    Article  CAS  PubMed  Google Scholar 

  22. Schlitt, T., Palin, K., Rung, J., Dietmann, S., Lappe, M., Ukkonen, E., et al. (2003). From gene networks to gene function. Genome Research, 13(12), 2568–2576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32(Database issue), D277–D280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Prieto, C., Risueno, A., & Fontanillo, C. (2008). De las Rivas J. Human gene coexpression landscape: Confident network derived from tissue transcriptomic profiles. PLoS One, 3(12), e3911.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, Y. Y., Chen, Q. L., Guan, Y., Guo, Z. Z., Zhang, H., Zhang, W., et al. (2014). Transcriptional profiling and co-expression network analysis identifies potential biomarkers to differentiate chronic hepatitis B and the caused cirrhosis. Molecular BioSystems, 10(5), 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  27. Carlson, M. R., Zhang, B., Fang, Z., Mischel, P. S., Horvath, S., & Nelson, S. F. (2006). Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression networks. BMC Genomics, 7, 40.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Shi, J., Abdelwahid, E., & Wei, L. (2011). Apoptosis in anthracycline cardiomyopathy. Current Pediatric Reviews, 7(4), 329–336.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunolgiae et therapiae experimentalis, 57(6), 435–445.

    Article  CAS  Google Scholar 

  30. Evison, B. J., Bilardi, R. A., Chiu, F. C., Pezzoni, G., Phillips, D. R., & Cutts, S. M. (2009). CpG methylation potentiates pixantrone and doxorubicin-induced DNA damage and is a marker of drug sensitivity. Nucleic Acids Research, 37(19), 6355–6370. doi:10.1093/nar/gkp700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pugatsch, T., Abedat, S., Lotan, C., & Beeri, R. (2006). Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways. Breast Cancer Research, 8(4), R35.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Abdel-aleem, S., el-Merzabani, M. M., Sayed-Ahmed, M., Taylor, D. A., & Lowe, J. E. (1997). Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. Journal of Molecular and Cellular Cardiology, 29(2), 789–797. doi:10.1006/jmcc.1996.0323.

    Article  CAS  PubMed  Google Scholar 

  33. Berg, J. M. T. J., & Stryer, L. (2002). Biochemistry (5th ed.). New York: W H Freeman.

    Google Scholar 

  34. Wu, R., Smeele, K. M., Wyatt, E., Ichikawa, Y., Eerbeek, O., Sun, L., et al. (2011). Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circulation Research, 108(1), 60–69. doi:10.1161/circresaha.110.223115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. McCommis, K. S., Douglas, D. L., Krenz, M., & Baines, C. P. (2013). Cardiac-specific hexokinase 2 overexpression attenuates hypertrophy by increasing pentose phosphate pathway flux. Journal of the American Heart Association, 2(6), e000355. doi:10.1161/jaha.113.000355.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zhang, S., Hulver, M. W., McMillan, R. P., Cline, M. A., & Gilbert, E. R. (2014). The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutrition & Metabolism, 11(1), 10. doi:10.1186/1743-7075-11-10.

    Article  CAS  Google Scholar 

  37. McAinch, A. J., Cornall, L. M., Watts, R., Hryciw, D. H., O’Brien, P. E., & Cameron-Smith, D. (2014). Increased pyruvate dehydrogenase kinase expression in cultured myotubes from obese and diabetic individuals. European Journal of Nutrition,. doi:10.1007/s00394-014-0780-2.

    PubMed  Google Scholar 

  38. Dai, Q., Yin, Y., Liu, W., Wei, L., Zhou, Y., Li, Z., et al. (2013). Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells. International Journal of Biochemistry & Cell Biology, 45(7), 1468–1478. doi:10.1016/j.biocel.2013.04.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from National Natural Science Foundation of China (81330003, 81025001) and Chang Jiang Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hua Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12012_2014_9306_MOESM1_ESM.tif

Supplement Fig. 1. Growth parameters, histochemical analysis and some blood parameters of saline and DOX-treated WT mice. a. Growth parameters such as BW, HW and HW/TL were detected. Data are the mean ± SEM (n = 4–7). *P<0.05, #P<0.01 vs. control. b. Histology of heart tissue after DOX injection (15 mg/kg) using hematoxylin and eosin (H&E) staining. Vacuole formation was pointed out with red arrows. Bar: 20 µm, magnification: ×400. c and d. Blood parameters including total hemoglobin and blood glucose were measured. Data are the mean ± SEM (n = 3–7). *P<0.05, #P<0.01 vs. control. BW indicates body weight; HW, heart weight; HW/TL, heart weight/tibia length. (TIFF 17264 kb)

Supplementary material 2 (DOC 45 kb)

Supplementary material 3 (DOC 76 kb)

Supplementary material 4 (DOC 106 kb)

Supplementary material 5 (DOC 41 kb)

Supplementary material 6 (DOC 57 kb)

Supplementary material 7 (DOC 47 kb)

Supplementary material 8 (DOC 35 kb)

Supplementary material 9 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, SN., Zhao, WJ., Zeng, XJ. et al. Microarray and Co-expression Network Analysis of Genes Associated with Acute Doxorubicin Cardiomyopathy in Mice. Cardiovasc Toxicol 15, 377–393 (2015). https://doi.org/10.1007/s12012-014-9306-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9306-7

Keywords

Navigation