Skip to main content

Advertisement

Log in

Chronic Cardiovascular Disease-Associated Gene Network Analysis in Human Umbilical Vein Endothelial Cells Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The association of dioxin exposure with increased morbidity or mortality of chronic cardiovascular diseases (CVDs) has been established by many epidemiological studies. However, the precise global gene expression alterations caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the cardiovascular system need to be further elucidated. In this study, we profiled the gene expression of human umbilical vein endothelial cells (HUVECs) exposed to different concentrations of TCDD by high-throughput sequencing. Expression of 1,838 genes was changed significantly after TCDD stimulation. The FunDO analysis suggested that some CVDs were highly associated with TCDD treatment, including atherosclerosis, thromboangiitis obliterans, pulmonary arterial hypertension (PAH), and hypertension. KEGG pathway analysis showed that many genes in the signaling pathways of vascular smooth muscle contraction and apoptosis were altered distinctly. In addition, we revealed evidence regarding the gene network changes of chronic CVDs including atherosclerosis, thrombosis, myocardial infarction (MI), hypertension, and PAH in TCDD-exposed HUVECs. We found that gene expression of β1-adrenoceptors (ADRB1), β2-adrenoceptors (ADRB2), endothelin-converting enzyme 1 (ECE1), and endothelin-1 gene (EDN1) that are involved in the blood pressure regulation pathway decreased apparently under TCDD treatment. Moreover, the transcripts of interleukin 1 beta (IL-) and tumor necrosis factor α (TNFα), which are related to atherosclerosis, were up-regulated by TCDD stimulation. In addition, the transcripts of Homo sapiens collagen, type IV, alpha 1 (COL4A1), and isoforms that trigger the MI pathway were up-regulated after TCDD exposure. Finally, we found enhanced platelet-derived growth factor (PDGF) and signal transducer and activator of transcription 5 (Stat5) expression with TCDD treatment in endothelial cells, which are involved in PAH induced by vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shan, Q., Wang, J., Huang, F., Lv, X., Ma, M., & Du, Y. (2014). Augmented atherogenesis in ApoE-null mice co-exposed to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 276, 136–146.

    Article  CAS  PubMed  Google Scholar 

  2. Lesca, P., Perrot, N., & Peryt, B. (1994). Modulating effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on skin carcinogenesis initiated by the weak inducer 7,12-dimethylbenz(a)anthracene. Drug Metabolism and Drug Interactions, 11, 37–57.

    Article  CAS  PubMed  Google Scholar 

  3. Pesatori, A. C., Consonni, D., Bachetti, S., Zocchetti, C., Bonzini, M., Baccarelli, A., et al. (2003). Short- and long-term morbidity and mortality in the population exposed to dioxin after the “Seveso accident”. Industrial Health, 41, 127–138.

    Article  CAS  PubMed  Google Scholar 

  4. Bertazzi, P. A., Bernucci, I., Brambilla, G., Consonni, D., & Pesatori, A. C. (1998). The Seveso studies on early and long-term effects of dioxin exposure: A review. Environmental Health Perspectives, 106(Suppl 2), 625–633.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Pelclova, D., Fenclova, Z., Preiss, J., Prochazka, B., Spacil, J., Dubska, Z., et al. (2002). Lipid metabolism and neuropsychological follow-up study of workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. International Archives of Occupational and Environmental Health, 75(Suppl), S60–S66.

    CAS  PubMed  Google Scholar 

  6. Humblet, O., Birnbaum, L., Rimm, E., Mittleman, M. A., & Hauser, R. (2008). Dioxins and cardiovascular disease mortality. Environmental Health Perspectives, 116, 1443–1448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., et al. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovascular Toxicology, 1, 285–298.

    Article  CAS  PubMed  Google Scholar 

  8. Arzuaga, X., Reiterer, G., Majkova, Z., Kilgore, M. W., Toborek, M., & Hennig, B. (2007). PPARalpha ligands reduce PCB-induced endothelial activation: possible interactions in inflammation and atherosclerosis. Cardiovascular Toxicology, 7, 264–272.

    Article  CAS  PubMed  Google Scholar 

  9. Biswas, G., Srinivasan, S., Anandatheerthavarada, H. K., & Avadhani, N. G. (2008). Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling. Proceedings of the National Academy of Sciences of the United States of America, 105, 186–191.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Luscher, T. F., & Barton, M. (1997). Biology of the endothelium. Clinical Cardiology, 20, II-3–II-10.

    Google Scholar 

  11. Fracchiolla, N. S., Todoerti, K., Bertazzi, P. A., Servida, F., Corradini, P., Carniti, C., et al. (2011). Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects. Toxicology, 283, 18–23.

    Article  CAS  PubMed  Google Scholar 

  12. Thackaberry, E. A., Jiang, Z., Johnson, C. D., Ramos, K. S., & Walker, M. K. (2005). Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicological Sciences, 88, 231–241.

    Article  CAS  PubMed  Google Scholar 

  13. Sobczak, M., Dargatz, J., & Chrzanowska-Wodnicka, M. (2010). Isolation and culture of pulmonary endothelial cells from neonatal mice. Journal of Visualized Experiments, 46, 2316.

    PubMed  Google Scholar 

  14. Zhang, F., Xu, X., Zhou, B., He, Z., & Zhai, Q. (2011). Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding. PLoS ONE, 6, e27553.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Audic, S., & Claverie, J. M. (1997). The significance of digital gene expression profiles. Genome Research, 7, 986–995.

    CAS  PubMed  Google Scholar 

  16. Ghazalpour, A., Doss, S., Yang, X., Aten, J., Toomey, E. M., Van Nas, A., et al. (2004). Thematic review series: The pathogenesis of atherosclerosis. Toward a biological network for atherosclerosis. Journal of Lipid Research, 45, 1793–1805.

    Article  CAS  PubMed  Google Scholar 

  17. Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nature Reviews. Cardiology, 8, 443–455.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, L. Q., Cheranova, D., Gibson, M., Ding, S., Heruth, D. P., Fang, D., et al. (2012). RNA-seq reveals novel transcriptome of genes and their isoforms in human pulmonary microvascular endothelial cells treated with thrombin. PLoS ONE, 7, e31229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yue, P., Melamud, E., & Moult, J. (2006). SNPs3D: Candidate gene and SNP selection for association studies. BMC Bioinformatics, 7, 166.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Patterson, D. G, Jr, Needham, L. L., Pirkle, J. L., Roberts, D. W., Bagby, J., Garrett, W. A., et al. (1988). Correlation between serum and adipose tissue levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin in 50 persons from Missouri. Archives of Environmental Contamination and Toxicology, 17, 139–143.

    Article  CAS  PubMed  Google Scholar 

  22. DeVito, M. J., Birnbaum, L. S., Farland, W. H., & Gasiewicz, T. A. (1995). Comparisons of estimated human body burdens of dioxin-like chemicals and TCDD body burdens in experimentally exposed animals. Environmental Health Perspectives, 103, 820–831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Morales-Hernández, A., Sánchez-Martín, F. J., Hortigón-Vinagre, M. P., Henao, F., & Merino, J. M. (2012). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis, 17, 1170–1181.

    Article  PubMed  Google Scholar 

  24. Furuhata, S., Ando, K., Oki, M., Aoki, K., Ohnishi, S., Aoyagi, K., et al. (2007). Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis. Molecular and Cellular Biochemistry, 298, 125–138.

    Article  CAS  PubMed  Google Scholar 

  25. Dekker, R. J., Boon, R. A., Rondaij, M. G., Kragt, A., Volger, O. L., Elderkamp, Y. W., et al. (2006). KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood, 107, 4354–4363.

    Article  CAS  PubMed  Google Scholar 

  26. Beedanagari, S. R., Bebenek, I., Bui, P., & Hankinson, O. (2009). Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicological Sciences, 110, 61–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zheng, H., Xue, S., Lian, F., & Wang, Y. Y. (2011). A novel promising therapy for vein graft restenosis: overexpressed Nogo-B induces vascular smooth muscle cell apoptosis by activation of the JNK/p38 MAPK signaling pathway. Medical Hypotheses, 77, 278–281.

    Article  CAS  PubMed  Google Scholar 

  28. Acevedo, L., Yu, J., Erdjument-Bromage, H., Miao, R. Q., Kim, J. E., Fulton, D., et al. (2004). A new role for Nogo as a regulator of vascular remodeling. Nature Medicine, 10, 382–388.

    Article  CAS  PubMed  Google Scholar 

  29. Ehret, G. B., Munroe, P. B., Rice, K. M., Bochud, M., Johnson, A. D., Chasman, D. I., et al. (2011). Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 478, 103–109.

    Article  CAS  PubMed  Google Scholar 

  30. Ross, R. (1999). Atherosclerosis—an inflammatory disease. New England Journal of Medicine, 340, 115–126.

    Article  CAS  PubMed  Google Scholar 

  31. Figarola, J. L., Singhal, J., Rahbar, S., Awasthi, S., & Singhal, S. S. (2014). LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells. Apoptosis, 19, 776–788.

    Article  CAS  PubMed  Google Scholar 

  32. Pelclova, D., Prazny, M., Skrha, J., Fenclova, Z., Kalousova, M., Urban, P., et al. (2007). 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity. Human and Experimental Toxicology, 26, 705–713.

    Article  CAS  PubMed  Google Scholar 

  33. Aragon, A. C., Goens, M. B., Carbett, E., & Walker, M. K. (2008). Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure sensitizes offspring to angiotensin II-induced hypertension. Cardiovascular Toxicology, 8, 145–154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Denison, M. S., Rogers, J. M., Rushing, S. R., Jones, C. L., Tetangco, S. C., & Heath-Pagliuso, S. (2002). Analysis of the aryl hydrocarbon receptor (AhR) signal transduction pathway. Curr Protoc Toxicol Chapter, 4(Unit4), 8.

    Google Scholar 

  35. Amara, I. E., & El-Kadi, A. O. (2011). Transcriptional modulation of the NAD(P)H:quinone oxidoreductase 1 by mercury in human hepatoma HepG2 cells. Free Radical Biology & Medicine, 51, 1675–1685.

    Article  CAS  Google Scholar 

  36. Macneil, L. T., & Walhout, A. J. (2011). Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Research, 21, 645–657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Vogel, C. F., Sciullo, E., & Matsumura, F. (2004). Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation. Cardiovascular Toxicology, 4, 363–373.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, D., Nishimura, N., Kuo, V., Fiehn, O., Shahbaz, S., Van Winkle, L., et al. (2011). Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in apolipoprotein E-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1260–1267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Irvine, K. M., Andrews, M. R., Fernandez-Rojo, M. A., Schroder, K., Burns, C. J., Su, S., et al. (2009). Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. Journal of Leukocyte Biology, 85, 278–288.

    Article  CAS  PubMed  Google Scholar 

  40. Kopf, P. G., Scott, J. A., Agbor, L. N., Boberg, J. R., Elased, K. M., Huwe, J. K., et al. (2010). Cytochrome P4501A1 is required for vascular dysfunction and hypertension induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 117, 537–546.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lind, P. M., Orberg, J., Edlund, U. B., Sjoblom, L., & Lind, L. (2004). The dioxin-like pollutant PCB 126 (3,3’,4,4’,5-pentachlorobiphenyl) affects risk factors for cardiovascular disease in female rats. Toxicology Letters, 150, 293–299.

    Article  CAS  PubMed  Google Scholar 

  42. Kopf, P. G., Huwe, J. K., & Walker, M. K. (2008). Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovascular Toxicology, 8, 181–193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ganna, A., Magnusson, P. K., Pedersen, N. L., de Faire, U., Reilly, M., Arnlov, J., et al. (2013). Multilocus genetic risk scores for coronary heart disease prediction. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2267–2272.

    Article  CAS  PubMed  Google Scholar 

  44. Woulfe, D. S. (2010). Akt signaling in platelets and thrombosis. Expert Review of Hematology, 3, 81–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wikenheiser, J., Karunamuni, G., Sloter, E., Walker, M. K., Roy, D., Wilson, D. L., et al. (2013). Altering HIF-1alpha through 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure affects coronary vessel development. Cardiovascular Toxicology, 13, 161–167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (2012CB945100, 2012BAK01B00), and the National Natural Science Foundation of China (81030004, 31371154), NSFC-CIHR joint grant (NSFC81161120538 and CIHR-CCI117951), The Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-R-09). Y.Y. was supported by the One Hundred Talents Program of the Chinese Academy of Sciences (2010OHTP10). He is a Fellow at the Jiangsu Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwen Wang or Ying Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12012_2014_9279_MOESM1_ESM.xls

Supplementary file 1: Table S1. Primers used in qRT-PCR to verify the key genes expression of the AHR pathway. (XLS 17 kb)

12012_2014_9279_MOESM2_ESM.tif

Supplementary file 2: Fig. S1. The cell viabilities of HUVECs treated with different concentrations of TCDD. The HUVECs were grown in medium supplemented with the indicated concentration of TCDD(0, 5, 10, 20, 40, and 80 nM)for 24 h prior to analyzing the cell viability (n = 6). Each point was represented by mean ± SEM. (TIFF 26317 kb)

12012_2014_9279_MOESM3_ESM.xls

Supplementary file 3: Table S2. Genes differentially expressed in TCDD-treated HUVECs. About 23,119 genes with average FPKM ≥ 0.01 in TCDD-exposed HUVECs at least 2 of the 4 treatments were selected to analyze the gene expression profile; 1838 genes with absolute fold change ≥ 1.5 and P < 0.05 were considered as differentially expressed genes in this study. (XLS 666 kb)

12012_2014_9279_MOESM4_ESM.tif

Supplementary file 4: Fig. S2. Heat-map hierarchical clustering of the differentially expressed genes. Heat-map images for the 1,838 differentially expressed genes were shown. Columns and rows in the heat-maps represented samples and genes, respectively. Sample names were displayed below the heat-maps. Color scale indicated gene expression. Red and blue indicated genes with high and low expression, respectively. (TIFF 27645 kb)

12012_2014_9279_MOESM5_ESM.xls

Supplementary file 5: Table S3. TCDD-responsive genes assigned to the principal categories of endothelial function. The genes expression altered by different doses of TCDD was presented as log 2 values. P < 0.05 was considered as statistical significance. (XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Qin, J., Chen, D. et al. Chronic Cardiovascular Disease-Associated Gene Network Analysis in Human Umbilical Vein Endothelial Cells Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Cardiovasc Toxicol 15, 157–171 (2015). https://doi.org/10.1007/s12012-014-9279-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9279-6

Keywords

Navigation