Skip to main content
Log in

Mitochondrial Cumulative Damage Induced by Mitoxantrone: Late Onset Cardiac Energetic Impairment

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Mitoxantrone (MTX) is a chemotherapeutic agent, which presents late irreversible cardiotoxicity. This work aims to highlight the mechanisms involved in the MTX-induced cardiotoxicity, namely the effects toward mitochondria using in vivo and in vitro studies. Male Wistar rats were treated with 3 cycles of 2.5 mg/kg MTX at day 0, 10, and 20. One treated group was euthanized on day 22 (MTX22) to evaluate the early MTX cardiac toxic effects, while the other was euthanized on day 48 (MTX48), to allow the evaluation of MTX late cardiac effects. Cardiac mitochondria isolated from 4 adult untreated rats were also used to evaluate in vitro the MTX (10 nM, 100 nM, and 1 μM) direct effects upon mitochondria functionality. Two rats of MTX48 died on day 35, and MTX treatment caused a reduction in relative body weight gain in both treated groups with no significant changes in water and food intake. Decreased levels of plasma total creatine kinase and CK-MB were detected in the MTX22 group, and increased plasma levels of lactate were seen in MTX48. Increased cardiac relative mass and microscopic changes were evident in both treated groups. Considering mitochondrial effects, for the first time, it was evidenced that MTX induced an increase in the complex IV and complex V activities in MTX22 group, while a decrease in the complex V activity was accompanied by the reduction in ATP content in the MTX48 rats. No alterations in mitochondria transmembrane potential were found in isolated mitochondria from MTX48 rats or in isolated mitochondria directly incubated with MTX. This study highlights the relevance of the cumulative MTX-induced in vivo mitochondriopathy to the MTX cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine 5′-triphosphate

AST:

Aspartate aminotransferase

BN-PAGE:

Blue native polyacrylamide gel electrophoresis

CK:

Creatine kinase

DAB:

Diaminobenzidine

DTNB:

5,5-Dithio-bis(2-nitrobenzoic acid)

GSH:

Reduced glutathione

GSHt:

Total glutathione

GSSG:

Oxidized glutathione

HClO4 :

Perchloric acid

LDH:

Lactate dehydrogenase

MTX:

Mitoxantrone

β-NADPH:

Reduced β-nicotinamidephosphate adenine dinucleotide

TPP+ :

Tetraphenylphosphonium

References

  1. Seiter, K. (2005). Toxicity of the topoisomerase II inhibitors. Expert Opinion on Drug Safety, 4, 219–234.

    Article  CAS  PubMed  Google Scholar 

  2. Kingwell, E., Koch, M., Leung, B., Isserow, S., Geddes, J., Rieckmann, P., et al. (2010). Cardiotoxicity and other adverse events associated with mitoxantrone treatment for MS. Neurology, 74, 1822–1826.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Avasarala, J. R., Cross, A. H., Clifford, D. B., Singer, B. A., Siegel, B. A., & Abbey, E. E. (2003). Rapid onset mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. Multiple Sclerosis, 9, 59–62.

    Google Scholar 

  4. Canal, P., Attal, M., Chatelut, E., Guichard, S., Huguet, F., Muller, C., et al. (1993). Plasma and cellular pharmacokinetics of mitoxantrone in high-dose chemotherapeutic regimen for refractory lymphomas. Cancer Research, 53, 4850–4854.

    CAS  PubMed  Google Scholar 

  5. Ehninger, G., Schuler, U., Proksch, B., Zeller, K. P., & Blanz, J. (1990). Pharmacokinetics and metabolism of mitoxantrone. A review. Clinical Pharmacokinetics, 18, 365–380.

    Article  CAS  PubMed  Google Scholar 

  6. Batra, V. K., Morrison, J. A., Woodward, D. L., Siverd, N. S., & Yacobi, A. (1986). Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metabolism Reviews, 17, 311–329.

    Article  CAS  PubMed  Google Scholar 

  7. Rossato, L., Costa, V. M., De Pinho, P., Freitas, V., Viloune, L., Bastos, M., et al. (2013). The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Archives of Toxicology, 10, 1809–1820. doi:10.1007/s00204-013-1040-6.

  8. Rossato, L. G., Costa, V. M., Villas-Boas, V., de Lourdes Bastos, M., Rolo, A., Palmeira, C., et al. (2013). Therapeutic concentrations of mitoxantrone elicit energetic imbalance in H9c2 cells as an earlier effect. Cardiovascular Toxicology. doi:10.1007/s12012-013-9224-0.

  9. Shipp, N. G., Dorr, R. T., Alberts, D. S., Dawson, B. V., & Hendrix, M. (1993). Characterization of experimental mitoxantrone cardiotoxicity and its partial inhibition by ICRF-187 in cultured neonatal rat heart cells. Cancer Research, 53, 550–556.

    CAS  PubMed  Google Scholar 

  10. Alderton, P. M., Gross, J., & Green, M. D. (1992). Comparative study of doxorubicin, mitoxantrone, and epirubicin in combination with ICRF-187 (ADR-529) in a chronic cardiotoxicity animal model. Cancer Research, 52, 194–201.

    CAS  PubMed  Google Scholar 

  11. Bachmann, E., Weber, E., & Zbinden, G. (1987). Effect of mitoxantrone and doxorubicin on energy metabolism of the rat heart. Cancer Treatment Reports, 71, 361–366.

    CAS  PubMed  Google Scholar 

  12. Padrão, A. I., Ferreira, R. M. P., Vitorino, R., Alves, R. M. P., Neuparth, M. J., Duarte, J. A., et al. (2011). OXPHOS susceptibility to oxidative modifications: The role of heart mitochondrial subcellular location. Biochimica et Biophysica Acta, 1807, 1106–1113.

    Article  PubMed  Google Scholar 

  13. Pontes, H., Duarte, J. A., De Pinho, P. G., Soares, M. E., Fernandes, E., Dinis-Oliveira, R. J., et al. (2008). Chronic exposure to ethanol exacerbates MDMA-induced hyperthermia and exposes liver to severe MDMA-induced toxicity in CD1 mice. Toxicology, 252, 64–71.

    Article  CAS  PubMed  Google Scholar 

  14. Rossato, L. G., Costa, V. M., De Pinho, P. G., Carvalho, F., Bastos, M. L., & Remião, F. (2011). Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Archives of Toxicology, 85, 929–939.

    Article  CAS  PubMed  Google Scholar 

  15. Barbosa, D. J., Capela, J. P., Oliveira, J. M., Silva, R., Ferreira, L. M., Siopa, F., et al. (2012). Pro-oxidant effects of ecstasy and its metabolites in mouse brain synaptosomes. British Journal of Pharmacology, 165, 1017–1033.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lowry, O., & Rosebrough, N. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–272.

    CAS  PubMed  Google Scholar 

  17. Rolo, A. P., Oliveira, P. J., Moreno, A. J., & Palmeira, C. M. (2000). Bile acids affect liver mitochondrial bioenergetics: Possible relevance for cholestasis therapy. Toxicological Sciences, 57, 177–185.

    Article  CAS  PubMed  Google Scholar 

  18. Duarte, F. V., Simões, A. M., Teodoro, J. S., Rolo, A. P., & Palmeira, C. M. (2011). Exposure to dibenzofuran affects lung mitochondrial function in vitro. Toxicology Mechanisms and Methods, 21, 571–576.

    Article  CAS  PubMed  Google Scholar 

  19. Patten, R. D., & Hall-Porter, M. R. (2009). Small animal models of heart failure: Development of novel therapies, past and present. Circulation, 2, 138–144.

    PubMed  Google Scholar 

  20. Novak, R. F., & Kharasch, E. D. (1985). Mitoxantrone: Propensity for free radical formation and lipid peroxidation-implications for cardiotoxicity. Investigational New Drugs, 3, 95–99.

    Article  CAS  PubMed  Google Scholar 

  21. Kharasch, E. D., & Novak, R. F. (1983). Inhibitory effects of anthracenedione antineoplastic agents on hepatic and cardiac lipid peroxidation. Journal of Pharmacology and Experimental Therapeutics, 226, 500–506.

    CAS  PubMed  Google Scholar 

  22. Ingwall, J. S., & Weiss, R. G. (2004). Is the failing heart energy starved? On using chemical energy to support cardiac function. Circulation Research, 95, 135–145.

    Article  CAS  PubMed  Google Scholar 

  23. Ventura-Clapier, R., Garnier, A., & Veksler, V. (2004). Energy metabolism in heart failure. Journal of Physiology, 555, 1–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Luft, F. C. (2001). Lactic acidosis update for critical care clinicians. Journal of the American Society of Nephrology, 12, S15–S19.

    PubMed  Google Scholar 

  25. Dzeja, P. P., Redfield, M. M., Burnett, J. C., & Terzic, A. (2000). Failing energetics in failing hearts. Current Cardiology Reports, 2, 212–217.

    Article  CAS  PubMed  Google Scholar 

  26. Kluza, J., Marchetti, P., Gallego, M.-A., Lancel, S., Fournier, C., Loyens, A., et al. (2004). Mitochondrial proliferation during apoptosis induced by anticancer agents: Effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene, 23, 7018–7030.

    Article  CAS  PubMed  Google Scholar 

  27. Khan, S. N., Lai, S. K., Kumar, P., & Khan, A. U. (2010). Effect of mitoxantrone on proliferation dynamics and cell cycle progression. Bioscience Reports, 30, 375–381.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação para a Ciência e Tecnologia (FCT)—project (EXPL/DTP-FTO/0290/2012)—QREN initiative with EU/FEDER financing through COMPETE—Operational Programme for Competitiveness Factors. LGR, VMC, and RJD-O thank FCT for their PhD Grant (SFRH/BD/63473/2009) and Post-doc Grants (SFRH/BPD/63746/2009) and (SFRH/BPD/36865/2007), respectively. The authors are grateful to Fundação para a Ciência e Tecnologia for grant no. Pest C/EQB/LA0006/2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luciana Grazziotin Rossato or Fernando Remião.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossato, L.G., Costa, V.M., Dallegrave, E. et al. Mitochondrial Cumulative Damage Induced by Mitoxantrone: Late Onset Cardiac Energetic Impairment. Cardiovasc Toxicol 14, 30–40 (2014). https://doi.org/10.1007/s12012-013-9230-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9230-2

Keywords

Navigation