Skip to main content

Advertisement

Log in

A Single Exposure to Acrolein Desensitizes Baroreflex Responsiveness and Increases Cardiac Arrhythmias in Normotensive and Hypertensive Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Short-term exposure to air pollutants has been linked to acute cardiovascular morbidity and mortality. Even in the absence of overt signs or symptoms, pollutants can cause subtle disruptions to internal compensatory mechanisms, which maintain homeostatic balance in response to various environmental and physiological stressors. We hypothesized that a single exposure to acrolein, a ubiquitous gaseous air pollutant, would decrease the sensitivity of baroreflex (BRS), which maintains blood pressure by altering heart rate (HR), modify cardiac electrophysiological properties and increase arrhythmia in rats. Wistar–Kyoto normotensive (WKY) and spontaneously hypertensive (SH) rats implanted with radiotelemeters and a chronic jugular vein catheter were tested for BRS using phenylephrine and sodium nitroprusside 2 days before and 1 h after whole-body exposure to 3 ppm acrolein (3 h). HR and electrocardiogram (ECG) were continuously monitored for the detection of arrhythmia in the pre-exposure, exposure and post-exposure periods. Whole-body plethysmography was used to continuously monitor ventilation in conscious animals. SH rats had higher blood pressure, lower BRS and increased frequency of AV block as evidence by non-conducted p-waves when compared with WKY rats. A single exposure to acrolein caused a decrease in BRS and increased incidence of arrhythmia in both WKY and SH rats. There were minimal ECG differences between the strains, whereas only SH rats experienced irregular breathing during acrolein. These results demonstrate that acrolein causes immediate cardiovascular reflexive dysfunction and persistent arrhythmia in both normal and hypertensive animals. As such, homeostatic imbalance may be one mechanism by which air pollution increases risk 24 h after exposure, particularly in people with underlying cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APB:

Atrial premature beat

BP:

Blood pressure

BRS:

Baroreflex sensitivity

ECG:

Electrocardiogram

f :

Breathing frequency

FA:

Filtered air

HF:

High frequency

HR:

Heart rate

HRV:

Heart rate variability

LF:

Low frequency

MAP:

Mean arterial pressure

NCPW:

Non-conducted p-wave

PM:

Particulate matter

RMSSD:

Root mean square of successive differences of NNs

SDNN:

Standard deviation of NN intervals

SH:

Spontaneously hypertensive

T e :

Expiratory time

T i :

Inspiratory time

TRPA1:

Transient receptor potential cation channel, member A1

VPB:

Ventricular premature beat

WKY:

Wistar–Kyoto

References

  1. Alarie, Y. (1973). Sensory irritation by airborne chemicals. Critical Reviews in Toxicology, 24, 299–363.

    Article  Google Scholar 

  2. Bartoli, C. R., Wellenius, G. A., Diaz, E. A., Lawrence, J., Coull, B. A., Akiyama, I., et al. (2009). Mechanisms of inhales fine particle air pollution-induced arterial blood pressure changes. Environmental Health Perspectives, 117(3), 361–366.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Berg, T., & Jensen, J. (2011). Simultaneous parasympathetic and sympathetic activation reveals altered autonomic control of heart rate, vascular tension, and epinephrine release in anesthetized hypertensive rats. Frontiers in Neurology, 2, 71.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Brook, R. D. (2008). Cardiovascular effects of air pollution. Clinical Science, 115, 175–187.

    Article  CAS  PubMed  Google Scholar 

  5. Carley, D. W., Berecek, K., Videnovic, A., & Radulovacki, M. (2000). Sleep-disordered respiration in phenotypically normotensive, genetically hypertensive rats. American Journal of Respiratory and Critical Care Medicine, 162, 1474–1479.

    Article  CAS  PubMed  Google Scholar 

  6. Camillo, C. A., Pitta, F., Possani, H. V., Barbosa, M., Marques, D., Cavalheri, V., et al. (2008). Heart rate variability and disease characteristics in patients with COPD. Lung, 186, 393–401.

    Article  PubMed  Google Scholar 

  7. Carll, A. P., Lust, R. M., Hazari, M. S., Perez, C. M., Krantz, Q. T., King, C. J., et al. (2013). Diesel exhaust inhalation increases cardiac output, bradyarrhythmias, and parasympathetic tone in aged heart failure-prone rats. Toxicological Sciences, 131(2), 583–595.

    Article  CAS  PubMed  Google Scholar 

  8. Conklin, D. J., Haberzettl, P., Prough, R. A., & Bhatnagar, A. (2009). Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1586–H1597.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Davoodi, G., Sharif, A. Y., Kazemisaeid, A., Sadeghian, S., Farahani, A. V., Sheikhvatan, M., et al. (2010). Comparison of heart rate variability and cardiac arrhythmias in polluted and clean air episodes in healthy individuals. Environmental Health and Preventive Medicine, 15(4), 217–221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. de Queiroz, T. M., Monteiro, M. M., & Braga, V. A. (2013). Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: New perspective. Frontiers in Physiology, 105, 1–6.

    Google Scholar 

  11. Devlin, R. B., Duncan, K. E., Jardim, M., Schmitt, M. T., Rappold, A. G., & Diaz-Sanchez, D. (2012). Controlled exposure of healthy young volunteers to ozone causes cardiovascular effects. Circulation, 126(1), 104–111.

    Article  CAS  PubMed  Google Scholar 

  12. El-Mas, M. M., & Abdel-Rahman, A. (2005). Longitudinal studies on the effect of hypertension on circadian hemodynamic and autonomic rhythms in telemetered rats. Life Sciences, 76(8), 901–915.

    Article  CAS  PubMed  Google Scholar 

  13. Faber, T. S., Staunton, A., Hnatkova, K., Camm, A. J., & Malik, M. (1996). Stepwise strategy of using short- and long-term heart rate variability for risk stratification after myocardial infarction. Pacing and Clinical Electrophysiology, 19, 1845–1851.

    Article  CAS  PubMed  Google Scholar 

  14. Farraj, A. K., Hazari, M. S., Haykal-Coates, N., Lamb, C., Winsett, D. W., Ge, Y., et al. (2010). ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats. American Journal of Respiratory Cell and Molecular Biology, 44(2), 185–196.

    Article  PubMed  Google Scholar 

  15. Farraj, A. K., Hazari, M. S., Winsett, D. W., Kulukulualani, A., Carll, A. P., Haykal-Coates, N., et al. (2012). Overt and latent cardiac effects of ozone inhalation in rats: Evidence for autonomic modulation and increased myocardial vulnerability. Environmental Health Perspectives, 120(3), 348–354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fukuma, N., Kato, K., Munakata, K., Hayashi, H., Kato, Y., Aisu, N., et al. (2012). Baroreflex mechanisms and response to exercise in patients with heart disease. Clinical Physiology and Functional Imaging, 32, 305–309.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Godleski, J. J., Verrier, R. L., Koutrakis, P., Catalano, P., Coull, B., & Reinisch, U. (2000). Mechanisms of morbidity and mortality from exposure to ambient air particles. Research Report/Health Effects Institute, 91, 5–103.

    Google Scholar 

  18. Hazari, M. S., Rowan, W. H., Winsett, D. W., Ledbetter, A. D., Haykal-Coates, N., Watkinson, W. P., et al. (2008). Potentiation of pulmonary reflex response to capsaicin 24 h following whole-body acrolein exposure is mediated by TRPV1. Respiratory Physiology and Neurobiology, 160(2), 160–171.

    Article  CAS  PubMed  Google Scholar 

  19. Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Costa, D. L., & Farraj, A. K. (2009). A single exposure to particulate or gaseous air pollution increases the risk of aconitine-induced cardiac arrhythmia in hypertensive rats. Toxicological Sciences, 112(2), 532–542.

    Article  CAS  PubMed  Google Scholar 

  20. Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Krantz, Q. T., King, C., Costa, D. L., et al. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119(7), 951–957.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Huckstorf, C., Ruckborn, K., Gerber, B., & Habeck, J. O. (1990). Ventilatory and blood pressure reactions to acute hypoxia and hyperoxia in chemoreceptor-denervated NWR and SHR. In H. Acker, A. Trzebski, & R. O’Regan (Eds.), Chemoreceptors and chemoreceptor reflexes (pp. 383–391). New York: Plenum.

    Chapter  Google Scholar 

  22. Jennings, D. B., & Lockett, H. J. (2000). Angiotensin stimulates respiration in spontaneously hypertensive rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R1125–R1133.

    CAS  PubMed  Google Scholar 

  23. Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., et al. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46, 714–718.

    Article  CAS  PubMed  Google Scholar 

  24. Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic features of chronic atrial fibrillation: The Framingham study. New England Journal of Medicine, 306, 1018–1022.

    Article  CAS  PubMed  Google Scholar 

  25. Karashima, Y., Damann, N., Prenen, J., Talavera, K., Segal, A., Voets, T., et al. (2007). Bimodal action of menthol on the transient receptor potential channel TRPA1. Journal of Neuroscience, 27, 9874–9884.

    Article  CAS  PubMed  Google Scholar 

  26. La Rovere, M. T., Pinna, G. D., Hohnloser, S. H., Marcus, F. I., Mortara, A., Nohara, R., et al. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: Implications for clinical trials. Circulation, 103, 2072–2077.

    Article  PubMed  Google Scholar 

  27. La Rovere, M. T., Pinna, G. D., & Raczak, G. (2008). Baroreflex sensitivity: Measurement and clinical implications. Annals of Noninvasive Electrocardiology, 13(2), 191–207.

    Article  PubMed  Google Scholar 

  28. Lai, C. J., Yang, C. C. H., Hsu, Y. Y., Lin, Y. N., & Kuo, T. B. J. (2006). Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. Journal of Applied Physiology, 100(6), 1974–1982.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, L. Y. (2009). Respiratory sensations evoked by activation of bronchopulmonary C-fibers. Respiratory Physiology and Neurobiology, 167, 26–35.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li, M., Wang, J., Xie, H. H., Shen, F., & Su, D. (2007). The susceptibility of ventricular arrhythmia to aconitine in conscious Lyon hypertensive rats. Acta Pharmacologica Sinica, 28, 211–215.

    Article  CAS  PubMed  Google Scholar 

  31. Lip, G. Y. H., Felmeden, D. C., Li-Saw-Hee, F. L., & Beevers, D. G. (2000). Hypertensive heart disease: A complex syndrome or a hypertensive ‘cardiomyopathy’. European Heart Journal, 21, 1653–1665.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J. L., Murakami, H., & Zucker, I. H. (1996). Effects of NO on baroreflex control of heart rate and renal nerve activity in conscious rabbits. American Journal of Physiology, 270, R1361–R1370.

    CAS  PubMed  Google Scholar 

  33. Lucas, P. A., Lacour, B., McCarron, D. A., & Drueke, T. (1987). Disturbance of acid-base balance in the young spontaneously hypertensive rat. Clinical Science, 73, 211–215.

    CAS  PubMed  Google Scholar 

  34. Meyer, J. S., Mehdirad, A., Salem, B. I., Jamry, W. A., Kulikowska, A., & Kulikowska, P. (2003). Sudden arrhythmia death syndrome: Importance of the long QT syndrome. American Family Physician, 68(3), 483–488.

    PubMed  Google Scholar 

  35. Nazaroff, W. W., & Singer, B. C. (2004). Inhalation of hazardous air pollutants from environmental tobacco smoke in US residences. Journal of Exposure Analysis and Environmental Epidemiology, 14, S71–S77.

    Article  CAS  PubMed  Google Scholar 

  36. O’Toole, T. E., Zheng, Y. T., Hellmann, J., Conklin, D. J., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology, 236, 194–201.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Perez, C. M., Ledbetter, A. D., Hazari, M. S., Haykal-Coates, N., Carll, A. P., Winsett, D. W., et al. (2013). Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicol. Sci. Apr., 132(2), 467–477.

    Article  CAS  Google Scholar 

  38. Reinhardt, T. E., & Ottmar, R. D. (2004). Baseline measurements of smoke exposure among wildland firefighters. Journal of Occupational and Environmental Hygiene, 1(9), 593–606.

    Article  CAS  PubMed  Google Scholar 

  39. Routledge, H. C., Manney, S., Harrison, R. M., Ayres, J. G., & Townend, J. N. (2006). Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart, 92, 220–227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Schaller, B. (2004). Trigeminocardiac reflex: A clinical phenomenon or a new physiological entity? Journal of Neurology, 251, 658–665.

    Article  CAS  PubMed  Google Scholar 

  41. Schaller, B., Cornelius, J. F., Prabhakar, H., Koerbel, A., Gnanalingham, K., Sandu, N., et al. (2009). The trigemino-cardiac reflex: An update of the current knowledge. Journal of Neurosurgical Anesthesiology, 21, 187–195.

    Google Scholar 

  42. Scridon, A., Gallet, C., Arisha, M. M., Orea, V., Chapuis, B., Li, N., et al. (2012). Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: The role of the autonomic nervous system. American Journal of Physiology. Heart and Circulatory Physiology, 303(3), H386–H392.

    Article  CAS  PubMed  Google Scholar 

  43. Simms, A. E., Paton, J. F. R., Pickering, A. E., & Allen, A. M. (2009). Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: Does it contribute to hypertension? Journal of Physiology, 587(3), 597–610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sithu, S. D., Srivastava, S., Siddiqui, M. A., Vladykovskaya, E., Riggs, D. W., Conklin, D. J., et al. (2010). Exposure to acrolein by inhalation causes platelet activation. Toxicology and Applied Pharmacology, 248, 100–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Spieker, L. E., Corti, R., Binggeli, C., Luscher, T. F., & Noll, G. (2000). Baroreceptor dysfunction induced by nitric oxide synthase inhibition in humans. Journal of the American College of Cardiology, 36, 213–218.

    Article  CAS  PubMed  Google Scholar 

  46. Stevens, J. F., & Maier, C. S. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition and Food Research, 52(1), 7–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Struyker-Boudier, H. A., Evenwel, R. T., Smits, J. F., & Van Essen, H. (1982). Baroreflex sensitivity during the development of spontaneous hypertension in rats. Clinical Science (London), 62, 589–594.

    CAS  Google Scholar 

  48. Treitman, R. D., Gurgess, W. A., & Gold, A. (1980). Air contaminants encountered by fire-fighters. American Industrial Hygiene Association Journal, 41, 796–803.

    Article  CAS  PubMed  Google Scholar 

  49. Thweatt, W. D., Harward, C. N., Sr, & Parrish, M. E. (2007). Measurement of acrolein and 1,3-butadiene in a single puff of cigarette smoke using lead-salt tunable diode laser infrared spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 67, 16–24.

    Article  PubMed  Google Scholar 

  50. United States Environmental Protection Agency. (2006). 1999 National Air Toxics Assessment. Office of Air Quality and Planning Standards, Washington DC.

  51. Valenti, V. E., Abreu, L. C., Saldiva, P. H., Carvalho, T. D., & Ferreira, C. (2010). Effects of sidestream cigarette smoke exposure on baroreflex components in spontaneously hypertensive rats. International Journal of Environmental Health Research, 20(6), 431–437.

    Article  CAS  PubMed  Google Scholar 

  52. Vanoli, E. (1997). Technology and physiology of baroreflex sensitivity. Cardiac Electrophysiology Review, 3, 352–353.

    Article  Google Scholar 

  53. Walker, M. J., Curtis, M. J., Hearse, D. J., Campbell, R. W., Janse, M. J., Yellon, D. M., et al. (1988). The Lambeth conventions: Guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion. Cardiovascular Research, 22, 447–455.

    Article  CAS  PubMed  Google Scholar 

  54. Widdicombe, J. (2009). Lung afferent activity: Implications for respiratory sensation. Respiratory Physiology and Neurobiology, 167, 2–8.

    Article  PubMed  Google Scholar 

  55. Willis, D. N., Liu, B., Ha, M. A., Jordt, S. E., & Morris, J. B. (2011). Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. The FASEB Journal, 25, 4434–4444.

    Article  CAS  PubMed Central  Google Scholar 

  56. Zheng, S., Wang, M., Wang, S., Tao, Y., & Shang, K. (2013). Short-term effects of gaseous pollutants and particulate matter on daily hospital admissions for cardio-cerebrovascular disease in Lanzhou: Evidence from a heavily polluted city in China. International Journal of Environmental Research and Public Health, 10(2), 462–477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Marie McGee, Ian Gilmour and Wayne Cascio for their insightful review of the manuscript.

Conflict of interest

The authors do not have any actual or potential competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi S. Hazari.

Additional information

Disclaimer: This paper has been reviewed and approved for release by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. EPA, nor does mention of trade names.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazari, M.S., Griggs, J., Winsett, D.W. et al. A Single Exposure to Acrolein Desensitizes Baroreflex Responsiveness and Increases Cardiac Arrhythmias in Normotensive and Hypertensive Rats. Cardiovasc Toxicol 14, 52–63 (2014). https://doi.org/10.1007/s12012-013-9228-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9228-9

Keywords

Navigation