Skip to main content
Log in

Exposure to Intermittent Noise Exacerbates the Cardiovascular Response of Wistar–Kyoto Rats to Ozone Inhalation and Arrhythmogenic Challenge

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Noise has become a prevalent public health problem across the world. Although there is a significant amount of data demonstrating the harmful effects of noise on the body, very little is known about how it impacts subsequent responses to other environmental stressors like air pollution, which tend to colocalize in urban centers. Therefore, this study was conducted to determine the effect of intermittent noise on cardiovascular function and subsequent responses to ozone (O3). Male Wistar–Kyoto rats implanted with radiotelemeters to non-invasively measure heart rate (HR) and blood pressure (BP), and assess heart rate variability (HRV) and baroreflex sensitivity (BRS) were kept in the quiet or exposed to intermittent white noise (85–90 dB) for one week and then exposed to either O3 (0.8 ppm) or filtered air. Left ventricular function and arrhythmia sensitivity were measured 24 h after exposure. Intermittent noise caused an initial increase in HR and BP, which decreased significantly later in the regimen and coincided with an increase in HRV and BRS. Noise caused HR and BP to be significantly elevated early during O3 and lower at the end when compared to animals kept in the quiet while the increased HRV and BRS persisted during the 24 h after. Lastly, noise increased arrhythmogenesis and may predispose the heart to mechanical function changes after O3. This is the first study to demonstrate that intermittent noise worsens the cardiovascular response to inhaled O3. These effects may occur due to autonomic changes and dysregulation of homeostatic controls, which persist one day after exposure to noise. Hence, co-exposure to noise should be taken into account when assessing the health effects of urban air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hildrum, B., Mykletun, A., Stordal, E., Bjelland, I., Dahl, A. A., & Holmen, J. (2007). Association of low blood pressure with anxiety and depression: the Nord-Trøndelag Health Study. J. Epidemiol. Commun. Health., 61(1), 53–58.

    Google Scholar 

  2. Thiesse, L., Rudzik, F., Kraemer, J. F., Spiegel, K., Leproult, R., Wessel, N., et al. (2020). Transportation noise impairs cardiovascular function without altering sleep: the importance of autonomic arousals. Environ. Res., 182, 109086. https://doi.org/10.1016/j.envres.2019.109086.

    Article  CAS  PubMed  Google Scholar 

  3. Turner, J. G., Parrish, J. L., Hughes, L. F., Toth, L. A., & Caspary, D. M. (2005). Hearing in laboratory animals: strain differences and nonauditory effects of noise. Comp. Med., 55(1), 12–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beutel, M. E., Jünger, C., Klein, E. M., Wild, P., Lackner, K., Blettner, M., et al. (2016). Noise annoyance is associated with depression and anxiety in the general population—the contribution of aircraft noise. PLoS One, 11(5), e0155357.

    PubMed  PubMed Central  Google Scholar 

  5. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., et al. (2014). Auditory and non-auditory effects of noise on health. Lancet, 383(9925), 1325–1332.

    PubMed  Google Scholar 

  6. Lee, G. S., Chen, M. L., & Wang, G. Y. (2010). Evoked response of heart rate variability using short-duration white noise. Auton. Neursci., 155, 97–99.

    Google Scholar 

  7. Soderlund, J., & Lindskog, M. (2018). Relevance of rodent models of depression in clinical practice: can we overcome the obstacles in translational neuropsychiatry? Int. J. Neuropsychopharmacol., 21(7), 668–676.

    PubMed  PubMed Central  Google Scholar 

  8. Duschek, S., Dietel, A., Schandry, R., & Reyes Del Paso, G. A. (2008). Increased baroreflex sensitivity and reduced cardiovascular reactivity in individuals with chronic low blood pressure. Hypertens. Res., 31(10), 1873–1878.

    PubMed  Google Scholar 

  9. Lusk, S. L., Gillespie, B., Hagerty, B. M., & Ziemba, R. A. (2004). Acute effects of noise on blood pressure and heart rate. Arch. Environ. Health, 59, 392–399.

    PubMed  Google Scholar 

  10. Konkle, A. T. M., Keith, S. E., McNamee, J. P., & Michaud, D. (2017). Chronic noise exposure in the spontaneously hypertensive rat. Noise Health, 19(90), 213–221.

    PubMed  PubMed Central  Google Scholar 

  11. Dye, J. A., Costa, D. L., & Kodavanti, U. P. (2015). Executive summary: variation in susceptibility to ozone-induced health effects in rodent models of cardiometabolic disease. Inhal. Toxicol., 27(Suppl 1), 105–115.

    CAS  PubMed  Google Scholar 

  12. Farraj, A. K., Malik, F., Haykal-Coates, N., Walsh, L., Winsett, D., Terrell, D., et al. (2016). Morning NO2 exposure sensitizes hypertensive rats to the cardiovascular effects of same day O3 exposure in the afternoon. Inhal. Toxicol., 28(4), 170–179.

    CAS  PubMed  Google Scholar 

  13. Perepu, R. S., Dostal, D. E., Garcia, C., Kennedy, R. H., & Sethi, R. (2012). Cardiac dysfunction subsequent to chronic ozone exposure in rats. Mol. Cell. Biochem., 360(1–2), 339–345.

    CAS  PubMed  Google Scholar 

  14. Gannouni, N., Mhamdi, A., Tebourbi, O., El May, M., Sakly, M., & Rhouma, K. (2013). Qualitative and quantitative assessment of noise at moderate intensities on extra-auditory system in adult rats. Noise Health, 15, 406–411.

    PubMed  Google Scholar 

  15. Said, M. A., & El-Gohary, O. A. (2016). Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress. General Physiol. Biophys., 35(3), 371–377.

    CAS  Google Scholar 

  16. Liu, Z., Liu, H., & Zeng, Z. H. (2018). Chronic unpredictable mild stress causing cardiac and thoracic spinal cord electrophysiological abnormalities may be associated with increased cardiac expression of serotonin and growth-associated protein-43 in rats. Biomed. Res. Int.. https://doi.org/10.1155/2018/8697913.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Daiber, A., Kröller-Schön, S., Frenis, K., Oelze, M., Kalinovic, S., Vujacic-Mirski, K., et al. (2019). Environmental noise induces the release of stress hormones and inflammatory signaling molecules leading to oxidative stress and vascular dysfunction-Signatures of the internal exposome. Biofactors., 45(4), 495–506.

    CAS  PubMed  Google Scholar 

  18. Sgoifo, A., & Carnevali, L. (2015). Social stress-induced depression, autonomic dysregulation and cardiovascular dysfunction in rodents. Autonom. Neurosci., 192, 37–42.

    Google Scholar 

  19. Hanss, R., Bein, B., Ledowski, T., Lehmkuhl, M., Ohnesorge, H., Scherkl, W., et al. (2005). Heart rate variability predicts severe hypotension after spinal anesthesia for elective cesarean delivery. Clin. Sci., 102, 1086–1093.

    Google Scholar 

  20. van Kempen, E., & Babisch, W. (2012). The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J. Hyperten., 30(6), 1075–1086.

    Google Scholar 

  21. Fink, D. J. (2017). What is a safe noise level for the public? Am. J. Public Health., 107(1), 44–45.

    PubMed  PubMed Central  Google Scholar 

  22. Andersson, E. M., Ögren, M., Molnár, P., Segersson, D., Rosengren, A., & Stockfelt, L. (2020). Road traffic noise, air pollution and cardiovascular events in a Swedish cohort. Environ. Res., 185, 109446.

    CAS  PubMed  Google Scholar 

  23. Münzel, T., Schmidt, F. P., Steven, S., Herzog, J., Daiber, A., & Sorensen, M. (2018). Environmental noise and the cardiovascular system. J. Am. Coll. Cardiol., 71(6), 688–697.

    PubMed  Google Scholar 

  24. Barath, S., Langrish, J. P., Lundbäck, M., Bosson, J. A., Goudie, C., Newby, D. E., et al. (2013). Short-term exposure to ozone does not impair vascular function or affect heart rate variability in healthy young men. Tox. Sci., 135, 292–299.

    CAS  Google Scholar 

  25. Weisz, N., Schandry, R., Jacobs, A., Mialet, J., & Duschek, S. (2002). Early contingent negative variation of the EEG and attentional flexibility are reduced in hypotension. Int. J. Psychophysiol., 45(3), 253–260.

    PubMed  Google Scholar 

  26. Miller, C. N., Kodavanti, U. P., Stewart, E. J., Schladweiler, M. C., Richards, J. H., Snow, S. J., et al. (2019). Fetal growth outcomes following peri-implantation exposure of Long-Evans rats to noise and ozone differ by sex. Biol. Sex Differ., 10(1), 54.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J., & Kieval, R. S. (2004). Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43(2), 306–311.

    CAS  PubMed  Google Scholar 

  28. Seidler, A., Hegewald, J., Seidler, A. L., Schubert, M., Wagner, M., Dröge, P., et al. (2017). Association between aircraft, road and railway traffic noise and depression in a large case-control study based on secondary data. Environ. Res., 152, 263–271.

    CAS  PubMed  Google Scholar 

  29. Pitchika, A., Hampel, R., Wolf, K., Kraus, U., Cyrys, J., Babisch, W., et al. (2017). Long-term associations of modeled and self-reported measures of exposure to air pollution and noise at residence on prevalent hypertension and blood pressure. Sci. Total Environ., 593–594, 337–346.

    PubMed  Google Scholar 

  30. Grippo, A. J., Moffitt, J. A., & Johnson, A. K. (2008). Evaluation of baroreceptor reflex function in the chronic mild stress rodent model of depression. Psychosom. Med., 70(4), 435–443.

    PubMed  PubMed Central  Google Scholar 

  31. Lercher, P., Widmann, U., & Thudium, J. (2014). Hypotension and environmental noise: a replication study. Int. J. Environ. Res. Public Health, 11(9), 8661–8688.

    PubMed  PubMed Central  Google Scholar 

  32. Rowan, W. H., III, Campen, M. J., Wichers, L. B., & Watkinson, W. P. (2007). Heart rate variability in rodents: uses and caveats in toxicological studies. Cardiovasc Toxicol, 7, 28–51.

    CAS  PubMed  Google Scholar 

  33. Münzel, T., Knorr, M., Schmidt, F., von Bardeleben, S., Gori, T., & Schulz, E. (2016). Airborne disease: a case of a Takotsubo cardiomyopathy as a consequence of nighttime aircraft noise exposure. Eur. Heart J., 37, 2844.

    PubMed  Google Scholar 

  34. Carll, A. P., Haykal-Coates, N., Winsett, D. W., et al. (2010). Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy. Inhal Toxicol, 22, 355–368.

    CAS  PubMed  Google Scholar 

  35. Andriessen, P., Oetomo, S. B., Peters, C., Vermeulen, B., Wijn, P., & Blanco, C. E. (2005). Baroreceptor reflex sensitivity in human neonates: the effect of postmenstrual age. J. Physiol., 568(Pt 1), 333–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraus, U., Schneider, A., Breitner, S., Hampel, R., Rückerl, R., Pitz, M., et al. (2013). Individual daytime noise exposure during routine activities and heart rate variability in adults: a repeated measures study. Environ. Health Perspect., 121(5), 607–612.

    PubMed  PubMed Central  Google Scholar 

  37. Farraj, A. K., Hazari, M. S., Winsett, D. W., Kulukulualani, A., Carll, A. P., Haykal-Coates, N., et al. (2012). Overt and latent cardiac effects of ozone inhalation in rats: evidence for autonomic modulation and increased myocardial vulnerability. Environ. Health Perspect., 120(3), 348–354.

    CAS  PubMed  Google Scholar 

  38. Stansfeld, S. A. (2015). Noise effects on health in the context of air pollution exposure. Int. J. Environ. Res. Public Health, 12(10), 12735–12760.

    PubMed  PubMed Central  Google Scholar 

  39. Lercher, P., & Widmann, U. (2013). Association and moderation of self-reported hypotension with traffic noise exposure: a neglected relationship. Noise Health, 15(65), 205–216.

    PubMed  Google Scholar 

  40. Babisch, W. (2003). Stress hormones in the research on cardiovascular effects of noise. Noise Health, 5(18), 1–11.

    CAS  PubMed  Google Scholar 

  41. El Aarbaoui, T., Méline, J., Brondeel, R., & Chaix, B. (2017). Short-term association between personal exposure to noise and heart rate variability: the RECORD multisensor study. Environ. Pollut., 231(Pt 1), 703–711.

    PubMed  Google Scholar 

  42. Carll, A. P., Lamb, C., Hazari, M. S., et al. (2012). Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats. Toxicol. Sci., 128, 490–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bertinieri, G., Di Rienzo, M., Cavallazzi, A., Ferrari, A. U., Pedotti, A., & Mancia, G. (1985). A new approach to analysis of the arterial baroreflex. J. Hyperten., 3(Suppl. 3), S79–S81.

    CAS  Google Scholar 

  44. Licht, C. M., de Geus, E. J., Seldenrijk, A., van Hout, H. P., Zitman, F. G., van Dyck, R., et al. (2009). Depression is associated with decreased blood pressure, but antidepressant use increases the risk for hypertension. Hypertension, 53(4), 631–638.

    CAS  PubMed  Google Scholar 

  45. Di Rienzo, M., Bertinieri, G., Mancia, G., & Pedotti, A. (1985). A new method for evaluating the baroreflex role by a joint pattern analysis of pulse interval and systolic blood pressure series. Med. Biol. Eng. Comput., 1, 313–314.

    Google Scholar 

  46. Theaston, F. (Ed.). (2011). Burden of Disease from Environmental Noise Quantification of Healthy Life Years Lost in Europe. Copenhagen, Denmark: World Health Organization.

    Google Scholar 

  47. Münzel, T., Sørensen, M., Gori, T., Schmidt, F. P., Rao, X., Brook, J., et al. (2017). Environmental stressors and cardio-metabolic disease: part I–epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur. Heart J., 38(8), 550–556.

    PubMed  Google Scholar 

  48. Harding, A. H., Frost, G. A., Tan, E., Tsuchiya, A., & Mason, H. M. (2013). The cost of hypertension-related ill-health attributable to environmental noise. Noise Health, 15, 8.

    Google Scholar 

  49. Berglund, B., Lindvall, T., & Schwela, D. H. (1999). Guidelines for Community Noise. Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. M. Ian Gilmour, Barbara Buckley and Erin Hines for the review of this manuscript.

Funding

The study was funded by the United States Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi S. Hazari.

Ethics declarations

Conflict of interest

There are no conflicts of interest or competing interests to disclose.

Ethical Approval

The study protocol received approval from Institutional Animal Care and Use Committee of the United States Environmental Protection Agency, as well as quality assurance clearance. All animals were treated humanely and with regard to alleviation of suffering

Additional information

Handling Editor: Jianyong Ma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer

This paper has been reviewed and approved for release by the Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. EPA, nor does mention of trade names.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazari, M.S., Phillips, K., Stratford, K.M. et al. Exposure to Intermittent Noise Exacerbates the Cardiovascular Response of Wistar–Kyoto Rats to Ozone Inhalation and Arrhythmogenic Challenge. Cardiovasc Toxicol 21, 336–348 (2021). https://doi.org/10.1007/s12012-020-09623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09623-0

Keywords

Navigation