Skip to main content

Advertisement

Log in

Cardiac Toxicity of Targeted Therapies Used in the Treatment for Solid Tumours: A Review

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiotoxicity associated with conventional cytostatics is a known phenomenon and is related to their general cytotoxic effects. This damage to the myocardium is usually irreversible. Despite the attempts to optimize safety profile of targeted anticancer drugs during their development, evidence shows that these new treatment modalities also have cardiotoxic potential or may adversely affect vascular system. Over the last years, a significant number of these agents have been introduced in medical practice. Arterial hypertension, arrhythmias, left ventricular dysfunction and a heart failure are the most frequent cardiovascular adverse effects of targeted anticancer agents, but this toxicity seems to be reversible. To enable early interventions and to minimize these cardiovascular adverse effects, health care professionals have to be well-informed and familiar with the safety profiles of the drugs they administered, the patient’s cardiovascular condition and co-morbidities, and they must regularly monitor their patients for potential adverse effects. The aim of this paper is to provide an overview of cardiotoxic effects caused by targeted anticancer drugs used in the treatment of solid tumours. We discuss pathophysiological mechanisms, diagnostics and treatment, risk factors and options for prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Abl:

abelson tyrosine kinase

ALL:

acute lymphoblastic leukaemia

Akt:

murine thymoma viral oncogene homolog 1 (alternative title: PKB protein kinase B)

ALK:

anaplastic lymphoma kinase

ASK:

activator of S-phase kinase

Bad:

Bcl-2 antagonist of cell death

Bak-1:

Bcl-2 antagonist killer

Bax:

Bcl-2 associated × protein

Bcl-2:

B-cell lymphoma 2

Bcl-xL:

Bcl-2-related protein, long isoform

Bcr-Abl:

breakpoint cluster region-abelson tyrosine kinase fusion protein

B-Raf:

v-Raf murine sarcoma viral oncogene homolog B1

CaM-kinase:

Ca(2+)/calmodulin kinase

cAMP:

cyclic adenosine monophosphate

CBP:

CREB-binding protein

CDK:

cyclin-dependent kinase

Cdc42:

cell division cycle 42

CREB:

cAMP response element-binding protein 1

c-Jun:

v-Jun avian sarcoma virus 17 oncogene homolog (JUN oncogene)

c-Kit:

v-Kit Hardy– Zuckerman 4 feline sarcoma viral oncogene homolog (KIT oncogene)

CML:

chronic myeloid leukaemia

CTLA-4:

cytotoxic T-lymphocyte antigen-4

DAG:

diacylglycerol

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

eIF-4E:

eukaryotic translation initiation factor 4E

Elk1:

ELK1 member of ETS oncogene family (oncogene ELK1)

EpCAM:

epithelial cellular adhesion molecule

ERK1:

mitogen-activated protein kinase 3 (MAPK3)

ERK2:

mitogen-activated protein kinase 1 (MAPK1)

FAK:

focal adhesion kinase

FGF:

fibroblast growth factor

FGFR4:

fibroblast growth factor receptor 4

Flt-3:

FMS-related tyrosine kinase 3

FOXO3A:

forkhead box O3A

GATA4:

GATA-binding protein 4

GCN2:

eukaryotic translation initiation factor 2-alpha kinase 4

GIST:

gastrointestinal stromal tumour

GMEB1:

glucocorticoid modulatory element-binding protein 1

Grb2:

growth factor receptor-bound protein 2

GSK-3b:

glycogen synthase kinase 3-beta

HDAC:

histone deacetylase

HER2:

v-ERB-B2 avian erythroblastic leukaemia viral oncogene homolog 2 (ERBB2, oncogene HER2, human epidermal growth receptor 2)

HER4:

v-ERB-B2 avian erythroblastic leukaemia viral oncogene homolog 4 (ERBB4, oncogene HER4)

IGF:

insulin-like growth factor I

ILK:

integrin-linked kinase

IP3:

inositol triphosphate

IRAK3:

interleukin 1 receptor-associated kinase 3

JAK (1, 2):

janus kinase (1, 2)

JNK:

c-Jun N-terminal kinases

KRAS:

v-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (oncogene KRAS)

MAPK:

mitogen-activated protein kinase

MARK (1–4):

MAP/microtubule affinity-regulating kinase 1–4

MEF2 (A–D):

MADS box transcription enhancer factor 2 (A-D)

MEK (1–6):

MAPK/ERK kinase 1–6

MEKK (1/2):

MAP/ERK kinase 1/2 (MEK kinase)

mTOR:

mammalian target of rapamycin

MURF2:

muscle-specific ring finger protein 2

Nbr1:

neighbour of BRCA1 gene

NFAT:

nuclear factor of activated T cells

NF-kB:

nuclear factor kappa-B

NSCLC:

non-small-cell lung cancer

p38:

p38 MAP kinase (mitogen-activated protein kinase 14—MAPK14)

p62:

ubiquitin-binding protein p62

PAK (2, 3):

p21 protein-activated kinase 2–3

PDGFR (α, β):

platelet-derived growth factor receptor (alpha–beta)

PDK1:

pyruvate dehydrogenase kinase isoenzyme 1

Ph+:

Philadelphia chromosome-positive leukaemia

PI3K:

phosphatidylinositol 3-kinase

PIP3:

phosphatidylinositol (3, 4, 5)- triphosphate

PKA:

protein kinase alpha

PKC:

protein kinase C

PLC:

phospholipase C

PLK:

polo-like kinase

PNET:

neuroendocrine tumours of pancreatic origin

PRKCQ:

protein kinase C–theta

PKI:

protein kinase inhibitors

Raf:

v-raf-1 murine leukaemia viral oncogene homolog 1 (oncogene RAF1, c-Raf)

Ras:

v-ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS, p21)

Ret:

rearranged during transfection protooncogene

RyR:

ryanodine receptors

S6K:

ribosome S6 kinase (p70S6K)

SCF–MGF:

stem cell factor (Kit ligand)

SERCA:

sarcoplasmic reticulum Ca(2+)-ATPase

Shc:

Shc transforming protein

SOS:

son of sevenless drosophila homolog 1

Src:

v-src avian sarcoma (Schmidt– Ruppin A-2) viral oncogene homolog

STAT (3/5):

signal transducer and activator of transcription 3/5

TGF-β:

transforming growth factor beta-1

TRAF (2/6):

TNF receptor-associated factor 2/6

Tyk 2:

tyrosine kinase 2

VEGF:

vascular endothelial growth factor A

VEGFR (1, 2, 3):

vascular endothelial growth factor receptor 1–3

β1AR:

β1-adrenergic receptor

References

  1. Hardie, D. G. (2011). AMP-activated protein kinase: A cellular energy sensor with a key role in metabolic disorders and in cancer. Biochemical Society Transactions, 39(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  2. Dillman, R. O. (2011). Cancer immunotherapy. Cancer Biotherapy Radiopharmacology, 26(1), 1–64.

    Article  CAS  Google Scholar 

  3. Chen, M. H., Kerkelä, R., & Forrce, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 117, 84–95.

    Article  Google Scholar 

  4. Cheng, H., & Force, T. (2010). Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circulation Research, 106, 21–34.

    Article  PubMed  CAS  Google Scholar 

  5. Kuramochi, Y., Guo, X., & Sawyer, D. B. (2006). Neuregulin activates erbB2-dependent Src/FAK signaling and cytoskletal remodeling in isolated adult rat cardiac myocytes. Journal of Molecular and Cellular Cardiology, 41(2), 228–235.

    Article  PubMed  CAS  Google Scholar 

  6. Grazette, L. P., Boecker, W., Matsui, T., Semigran, M., Force, T. L., Hajjar, R. J., et al. (2004). Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: Implications for herceptin-induced cardiomyopathy. Journal of the American College of Cardiology, 44(11), 2231–2238.

    Article  PubMed  CAS  Google Scholar 

  7. Ewer, M. S., Vooletich, M. T., Durand, J. B., Woods, M. L., Davis, J. R., Valero, V., et al. (2005). Reversibility of trastuzumab related cardiotoxicity: New insights based on clinical course and response to medical treatment. Journal of Clinical Oncology, 23(31), 7820–7826.

    Article  PubMed  CAS  Google Scholar 

  8. Perez, E. A., & Rodeheffer, R. (2004). Clinical cardiac tolerability of trastuzumab. Journal of Clinical Oncology, 22(2), 322–329.

    Article  PubMed  CAS  Google Scholar 

  9. Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher, L., et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. Journal of Clinical Oncology, 20(3), 719–726.

    Article  PubMed  CAS  Google Scholar 

  10. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783–792.

    Article  PubMed  CAS  Google Scholar 

  11. Bird, B. R., & Swain, S. M. (2008). Cardiac toxicity in breast cancer survivors: Review of potential cardiac problems. Clinical Cancer Research, 14(1), 14–24.

    Article  PubMed  CAS  Google Scholar 

  12. Ewer, M. S., Perez, E. A., & Baselga, J. (2007). Cardiac safety guidelines for the adjuvant use of trastuzumab (Herceptin) in HER2-positive early breast cancer. In Proceedings of the 10th international St. Gallen conference of primary therapy of early breast cancer, March 14–17, St. Gallen, Switzerland.

  13. Arnold, J., Liu, P., Demers, C., Dorian, P., Giannetti, N., Haddad, H., et al. (2006). Canadian cardiovascular society consensus conference recommendations on heart failure 2006: Diagnosis and management. Canadian Journal of Cardiology, 22(1), 23–45.

    Article  PubMed  Google Scholar 

  14. Merck Serono. (2010). Erbitux (cetuximab) prescribing information. Available from: http://www.erbitux.com. Accessed October 15, 2010.

  15. Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7(5), 332–344.

    Article  PubMed  CAS  Google Scholar 

  16. Scappaticci, F. A., Skillings, J. R., Holden, S. N., Gerber, H. P., Miller, K., Kabbinavar, F., et al. (2007). Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. JNCI: Journal of the National Cancer Institute, 99(16), 1232–1239.

    Article  PubMed  Google Scholar 

  17. Genentech, Inc. (2011). Highlights of prescribing informationAvastin. Available from: http://www.gene.com/gene/products/information/pdf/avastin-prescribing.pdf. Accessed December 20, 2011.

  18. Huerta, S., & Li, H. C. (2009). Bevacizumab-associated hypertension: Etiology, incidence, and management. Anti Cancer Drugs, 20(special issue 2), S22–S24.

    Article  Google Scholar 

  19. Zhu, X., Wu, S., Dahut, W. L., & Parikh, C. R. (2007). Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: Systematic review and meta-analysis. American Journal of Kidney Diseases, 49, 186–193.

    Article  PubMed  CAS  Google Scholar 

  20. Scartozzi, M., Galizia, E., Chiorrini, S., Giampieri, R., Berardi, R., Pierantoni, C., et al. (2009). Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Annals of Oncology, 20, 227–230.

    Article  PubMed  CAS  Google Scholar 

  21. Dincer, M., & Altundag, K. (2006). Angiotensin-converting enzyme inhibitors for bevacizumab-induced hypertension. The Annals of pharmacotherapy, 40(12), 2278–2279.

    Article  PubMed  Google Scholar 

  22. Heiss, M. M., Murawa, P., Koralewski, P., Kutarska, E., Kolesnik, O. O., Ivanchenko, V. V., et al. (2010). The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. International Journal of Cancer, 127(9), 2209–2221.

    Article  CAS  Google Scholar 

  23. O’Day, S. J., Maio, M., Chiarion-Sileni, V., Gajewski, T. F., Pehamberger, H., Bondarenko, I. N., et al. (2010). Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: A multicenter single-arm phase II study. Annals of Oncology, 21(8), 1712–1717.

    Article  PubMed  Google Scholar 

  24. Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 249(2), 132–139.

    Article  PubMed  CAS  Google Scholar 

  25. Fernández, A., Sanguino, A., Peng, Z., Ozturk, E., Chen, J., Crespo, A., et al. (2007). An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. Journal of Clinical Investigation, 117(12), 4044–4054.

    Article  PubMed  Google Scholar 

  26. Atallah, E., Durand, J. B., Kantarjian, H., & Cortes, J. (2007). Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood, 110(4), 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  27. Gambacorti, C., Tornaghi, L., Franceschino, A., Piazza, R., Corneo, G., & Pogliani, E. (2007). In reply to “cardiotoxicity of the cancer therapeutic agent imatinib mesylate”. Nature Medicine, 13, 13–14.

    Article  PubMed  CAS  Google Scholar 

  28. Iliescu, C., Yusuf, S. W., & Swafford, J. (2005). Impact of angiotensin converting enzyme inhibitors and carvedilol on recovery of cardiac function in imatinib associated cardiomyopathy. Journal of Cardiological Failure, 11(Suppl 6), S104.

    Google Scholar 

  29. Gnoni, A., Marech, I., Silvestris, N., Vacca, A., & Lorusso, V. (2011). Dasatinib: An anti-tumour agent via Src inhibition. Current Drug Targets, 12(4), 563–578.

    Article  PubMed  CAS  Google Scholar 

  30. Svoboda, M. (2011). Malignant pericardial effusion and cardiac tamponade (cardiac and pericardial symptoms). In I. N. Olver (Ed.), The MASCC textbook of cancer supportive care and survivorship (pp. 83–93). New York: Springer.

    Google Scholar 

  31. Novartis Pharmaceuticals Corporation. (2007). Nilotinib prescribing information. Available from: http://www.pharma.us.novartis.com/product/pi/pdf/tasigna.pdf. Accessed October 15, 2010.

  32. Faivre, S., Demetri, G., Sargent, W., & Raymond, E. (2007). Molecular basis for sunitinib efficacy and future clinical development. Nature Reviews Drug Discovery, 6, 734–745.

    Article  PubMed  CAS  Google Scholar 

  33. Motzer, R. J., Michaelson, M. D., Redman, B. G., Hudes, G. R., Wilding, G., Figlin, R. A., et al. (2006). Activity of SU11248: A multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24, 16–24.

    Article  PubMed  CAS  Google Scholar 

  34. Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 370, 2011–2019.

    Article  PubMed  CAS  Google Scholar 

  35. Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., et al. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine, 356(2), 115–124.

    Article  PubMed  CAS  Google Scholar 

  36. Demetri, G. D., van Oosterom, A. T., Garrett, C. R., Blackstein, M. E., Shah, M. H., Verweij, J., et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet, 368(9544), 1329–1338.

    Article  PubMed  CAS  Google Scholar 

  37. Orphanos, G. S., Ioannidis, G. N., & Ardavanis, A. G. (2009). Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncologica, 48(7), 964–970.

    Article  PubMed  CAS  Google Scholar 

  38. Sano, M., Minamino, T., Toko, H., Miyauchi, H., Orimo, M., Qin, Y., et al. (2007). P53-induced inhibition of HIF-1 causes cardiac dysfunction during pressure overload. Nature, 446, 444–448.

    Article  PubMed  CAS  Google Scholar 

  39. Desai, J., Yassa, L., Marqusee, E., George, S., Frates, M. C., Chen, M. H., et al. (2006). Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Annals of Internal Medicine, 145, 660–664.

    PubMed  Google Scholar 

  40. Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., et al. (2003). The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. Journal of American Medical Association, 289(19), 2560–2572.

    Article  CAS  Google Scholar 

  41. Hutson, T. E., Figlin, R. A., Kuhn, J. G., & Motzer, R. J. (2008). Targeted therapies for metastatic renal cell carcinoma: An overview of toxicity and dosing strategies. The Oncologist, 13(10), 1084–1096.

    Article  PubMed  CAS  Google Scholar 

  42. Telli, M. L., Witteles, R. M., Fischer, G. A., & Srinivas, S. (2008). Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Annals of Oncology, 19(9), 1613–1618.

    Article  PubMed  CAS  Google Scholar 

  43. Schmidinger, M., Zielinski, C. C., Vogl, U. M., Bojic, A., Bojic, M., Schukro, C., et al. (2008). Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 26(32), 5204–5212.

    Article  PubMed  Google Scholar 

  44. Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2005). ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: A report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure): Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the heart rhythm society. Circulation, 112(12), 1825–1852.

    Google Scholar 

  45. Wilhelm, S. M., Adnane, L., Newell, P., et al. (2008). Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Molecular Cancer Therapeutics, 7(10), 3129–3139.

    Article  PubMed  CAS  Google Scholar 

  46. Wu, S., Chen, J. J., Kudelka, A., Lu, J., & Zhu, X. (2008). Incidence and risk of hypertension with sorafenib in patients with cancer: A systematic review and meta-analysis. Lancet Oncology, 9, 117–123.

    Article  PubMed  CAS  Google Scholar 

  47. Bayer Pharmaceuticals. (2010). Nexavar (sorafenib) prescribing information. Available from: http://www.sorafenib.com. Accessed March 15, 2010.

  48. Raschi, E., Vasina, V., Ursino, M. G., Boriani, G., Martoni, A., & De Ponti, F. (2010). Anticancer drugs and cardiotoxicity: Insights and perspectives in the era of targeted therapy. Pharmacology & Therapeutics, 125(2), 196–218.

    Article  CAS  Google Scholar 

  49. Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356(2), 125–134.

    Article  PubMed  CAS  Google Scholar 

  50. Perez, E. A., Byrne, J. A., Hammond, I. W., Rafi, R., Martin, A. M., Berger, M. S., et al. (2006). Results of an analysis of cardiac function in 2,812 patients treated with lapatinib. Journal of Clinical Oncology, 24, 583.

    Google Scholar 

  51. Moy, B., & Goss, P. E. (2007). Lapatinib-associated toxicity and practical management recommendations. The Oncologist, 12(7), 756–765.

    Article  PubMed  CAS  Google Scholar 

  52. Noma, T., Lemaire, A., Naga Prasad, S. V., Barki-Harrington, L., Tilley, D. G., Chen, J., et al. (2007). β-arrestin-mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. Journal of Clinical Investigation, 117(9), 2445–2458.

    Article  PubMed  CAS  Google Scholar 

  53. Ribas, A., Kim, K. B., Schuchter, L., Gonzalez, R., Pavlick, A. C., Weber, J. S., et al. (2011). BRIM-2: An open-label, multicentric phase II study of vemurafenib in previously treated patients with BRAF V600E mutation-positive metastatic melanoma. Journal of Clinical Oncology, 29, 8509.

    Google Scholar 

  54. Zelboraf. (2011). Prescribing information and medical guide for additional important safety information. Available from: http://www.zelboraf.com/safety-information/index.html and http://www.zelboraf.com/safety-information/index.html. Accessed July 10, 2011.

  55. Votrient. (2011). Prescribing information. Research Triangle Park, NC, USA: GlaxoSmithKline. Available from: https://www.gsksource.com/gskprm/en/US/adirect/gskprm?cmd=ProductDetailPage&product_id=1279563278373&featureKey=601903. Accessed December 20, 2011.

  56. Sloan, B., & Scheinfeld, N. S. (2008). Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Current Opinion in Investigational Drugs, 9(12), 1324–1335.

    PubMed  CAS  Google Scholar 

  57. Sternberg, C. N., Davis, I. D., Mardiak, J., Szczylik, C., Lee, E., Wagstaff, J., et al. (2010). Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. Journal of Clinical Oncology, 28(6), 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  58. Bjornsti, M. A., & Houghton, P. J. (2004). The TOR pathway: A target for cancer therapy. Nature Reviews Cancer, 4, 335–348.

    Article  PubMed  CAS  Google Scholar 

  59. Afinitor. (2011). Summary of product characteristics. Basel, Switzerland. Novartis Pharma AG. Available from: http://www.afinitor.com/global/docs/Afinitor-CD-EN-10mg.pdf. Accessed July 10, 2011.

  60. Torisel. (2011). Prescribing information for TORISEL. Pfizer, Inc. Available from: http://labeling.pfizer.com/showlabeling.aspx?ID=490. Accessed July 10, 2011.

  61. Baur, B., Oroszlan, M., Hess, O., Carrel, T., & Mohacsi, P. (2011). Efficacy and safety of sirolimus and everolimus in heart transplant patients: A retrospective analysis. Transplantation Proceedings, 43(5), 1853–1861.

    Article  PubMed  CAS  Google Scholar 

  62. Gupta, R., & Maitland, M. L. (2011). Sunitinib, hypertension, and heart failure: A model for kinase inhibitor-mediated cardiotoxicity. Current Hypertension Reports, 13, 430–435.

    Article  PubMed  CAS  Google Scholar 

  63. Gotthardt, M., & Raddatz, K. (2006). Cardiac signaling: Cellular, molecular and clinical aspects. In D. Ganten & K. Ruckpaul (Eds.), Encyclopedic reference of genomics and proteomics in molecular medicine (pp. 208–214). New York: Springer.

    Chapter  Google Scholar 

  64. Chintalgattu, V., Ai, D., Langley, R. R., Zhang, J., Bankson, J. A., Shih, T. L., et al. (2010). Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress. Journal of Clinical Investigation, 120(2), 472–484.

    Article  PubMed  CAS  Google Scholar 

  65. Engelhardt, S. (2007). Alternative signaling: Cardiomyocyte β1-adrenergic receptors signal through EGFRs. Journal of Clinical Investigation, 117(9), 2396–2398.

    Article  PubMed  CAS  Google Scholar 

  66. Cingelova, S., Jurga, L., & Mladosievicova, B. (2007). Kardiotoxicita adjuvantnej liecby karcinomu prsnika. Klinicka onkologie, 20(5), 330–334.

    Google Scholar 

  67. Mudd, J. O., & Kass, D. A. (2008). Tackling heart failure in the twenty-first century. Nature, 451, 919–928.

    Article  PubMed  CAS  Google Scholar 

  68. Samarel, A. M. (2005). Costamers, focal adhesions, and cardiomyocyte mechanotransduction. American Journal of Physiology-Heart and Circulatory Physiology, 289, H2291–H2301.

    Article  PubMed  CAS  Google Scholar 

  69. Kang, Y. J. (2006). Cardiac hypertrophy: A risk factor for QT-prolongation and cardiac sudden death. Toxicologic Pathology, 34, 58–66.

    Article  PubMed  CAS  Google Scholar 

  70. Brana, I., & Tabernero, J. (2010). Cardiotoxicity. Annals of Oncology, 21, vii173–vii179.

    Article  PubMed  Google Scholar 

  71. Cardinale, D., & Sandri, M. T. (2010). Role of biomarkers in chemotherapy-induced cardiotoxicity. Progress in Cardiovascular Diseases, 53(2), 121–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Ministry of Health, project No. MZ0MOU2005, and by the IGA MZ CR, project No. NS/10357-3. We thank R. Lakomy, R. Nemecek, O. Slaby and J. Vyskocil for their helpful discussions and their constructive critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Svoboda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, M., Poprach, A., Dobes, S. et al. Cardiac Toxicity of Targeted Therapies Used in the Treatment for Solid Tumours: A Review. Cardiovasc Toxicol 12, 191–207 (2012). https://doi.org/10.1007/s12012-012-9164-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-012-9164-0

Keywords

Navigation