Skip to main content

Cardiotoxicity

  • Chapter
  • First Online:
Side Effects of Medical Cancer Therapy

Abstract

Although outcomes in cancer patients have dramatically improved with the development of novel cancer chemotherapies and combination treatment, these developments are nonetheless associated with emerging concerns over drug-induced cardiotoxicity. Moreover, recent incorporation of targeted therapies into therapeutic regimens has widened the cardiotoxic spectrum. Knowledge of these side effects and the main risk factors associated with cardiotoxicity in cancer patients is essential for adequate monitoring and early treatment of such events in these patients. This concern is reflected in drug development with an emphasis on improved characterization of potential cardiotoxicity of new compounds during the early phases of development and designing safer drugs. This chapter summarizes the major cardiotoxic effects and pathophysiology of a large number of antineoplastic treatments currently in use. Current recommendations for early treatment and future development are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.

    PubMed  CAS  Google Scholar 

  2. Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2328–38.

    PubMed  CAS  Google Scholar 

  3. Armenian SH, Bhatia S. Cardiovascular disease after hematopoietic cell transplantation – lessons learned. Haematologica. 2008;93(8):1132–6.

    PubMed  CAS  Google Scholar 

  4. Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28(8):1308–15.

    PubMed  Google Scholar 

  5. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

    PubMed  CAS  Google Scholar 

  6. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    PubMed  CAS  Google Scholar 

  7. Brana I, Tabernero J. Cardiotoxicity. Ann Oncol. 2010;21 suppl 7:vii173–9.

    PubMed  Google Scholar 

  8. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol. 2010;7(10):564–75.

    PubMed  Google Scholar 

  9. Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23(13):2900–2.

    PubMed  CAS  Google Scholar 

  10. Jones RL, Swanton C, Ewer MS. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2006;5(6):791–809.

    PubMed  CAS  Google Scholar 

  11. Steinberg JS, Cohen AJ, Wasserman AG, Cohen P, Ross AM. Acute arrhythmogenicity of doxorubicin administration. Cancer. 1987;60(6):1213–8.

    PubMed  CAS  Google Scholar 

  12. Harrison DT, Sanders LA. Pericarditis in a case of early daunorubicin cardiomyopathy. Ann Intern Med. 1976;85(3):339–41.

    PubMed  CAS  Google Scholar 

  13. Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629–36.

    PubMed  CAS  Google Scholar 

  14. Billingham ME, Bristow MR, Glatstein E, Mason JW, Masek MA, Daniels JR. Adriamycin cardiotoxicity: endomyocardial biopsy evidence of enhancement by irradiation. Am J Surg Pathol. 1977;1(1):17–23. Epub 1977 Mar 1.

    PubMed  CAS  Google Scholar 

  15. Billingham ME, Mason JW, Bristow MR, Daniels JR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep. 1978;62(6):865–72. Epub 1978 June 1.

    PubMed  CAS  Google Scholar 

  16. Mackay B, Ewer MS, Carrasco CH, Benjamin RS. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol. 1994;18(1–2):203–11. Epub 1994 Jan 1.

    PubMed  CAS  Google Scholar 

  17. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    PubMed  CAS  Google Scholar 

  18. van Dalen Elvira C, van der Pal Helena JH, Caron Huib N, Kremer Leontien CM. Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2009;(4):CD005008. Available from: http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD005008/frame.html.

  19. Von Hoff DD, Layard MW, Basa P. Risk factors for doxorubicin-­induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.

    Google Scholar 

  20. Steinherz LJ, Steinherz PG, Tan CTC, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. J Am Med Assoc. 1991;266(12):1672–7.

    CAS  Google Scholar 

  21. Hershman DL, McBride RB, Eisenberger A, Wei YT, Grann VR, Jacobson JS. Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26(19):3159–65.

    PubMed  CAS  Google Scholar 

  22. Bonneterre J, Roché H, Kerbrat P, Fumoleau P, Goudier MJ, Fargeot P, et al. Long-term cardiac follow-up in relapse-free patients after six courses of fluorouracil, epirubicin, and cyclophosphamide, with either 50 or 100 mg of epirubicin, as adjuvant therapy for node-positive breast cancer: French Adjuvant Study Group. J Clin Oncol. 2004;22(15):3070–9.

    PubMed  CAS  Google Scholar 

  23. Jain KK, Casper ES, Geller NL. A prospective randomized comparison of epirubicin and doxorubicin in patients with advanced breast cancer. J Clin Oncol. 1985;3(6):818–26.

    PubMed  CAS  Google Scholar 

  24. Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008;100(15):1058–67.

    PubMed  CAS  Google Scholar 

  25. Bedano PM, Brames MJ, Williams SD, Juliar BE, Einhorn LH. Phase II study of cisplatin plus epirubicin salvage chemotherapy in refractory germ cell tumors. J Clin Oncol. 2006;24(34):5403–7.

    PubMed  CAS  Google Scholar 

  26. Valero V, Buzdar AU, Theriault RL, Azarnia N, Fonseca GA, Willey J, et al. Phase II trial of liposome-encapsulated doxorubicin, cyclophosphamide, and fluorouracil as first-line therapy in patients with metastatic breast cancer. J Clin Oncol. 1999;17(5):1425–34.

    PubMed  CAS  Google Scholar 

  27. van Dalen Elvira C, Michiels Erna MC, Caron Huib N, Kremer Leontien CM. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2010;(5):CD005006. Available from: http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD005006/frame.html.

  28. Posner LE, Dukart G, Goldberg J. Mitoxantrone: an overview of safety and toxicity. Invest New Drugs. 1985;3(2):123–32.

    PubMed  CAS  Google Scholar 

  29. Dow E, Schulman H, Agura E. Cyclophosphamide cardiac injury mimicking acute myocardial infarction. Bone Marrow Transplant. 1993;12(2):169–72.

    PubMed  CAS  Google Scholar 

  30. Katayama M, Imai Y, Hashimoto H, Kurata M, Nagai K, Tamita K, et al. Fulminant fatal cardiotoxicity following cyclophosphamide therapy. J Cardiol. 2009;54(2):330–4.

    PubMed  Google Scholar 

  31. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    PubMed  CAS  Google Scholar 

  32. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    PubMed  CAS  Google Scholar 

  33. Costa RB, Kurra G, Greenberg L, Geyer CE. Efficacy and cardiac safety of adjuvant trastuzumab-based chemotherapy regimens for HER2-positive early breast cancer. Ann Oncol. 2010;21(11):2153–60.

    PubMed  CAS  Google Scholar 

  34. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

    PubMed  CAS  Google Scholar 

  35. Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2–overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23(31):7811–9.

    PubMed  CAS  Google Scholar 

  36. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.

    PubMed  CAS  Google Scholar 

  37. Serrano C, Cortés J, De Mattos-Arruda L, Bellet M, Gómez P, Saura C, et al. Trastuzumab-related cardiotoxicity in the elderly: a role for cardiovascular risk factors. Ann Oncol. 2012 Apr; 23(4):897–902. Epub 2011 Aug 9.

    Google Scholar 

  38. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. Epub 2001 Mar 15.

    PubMed  CAS  Google Scholar 

  39. Mann DL. Mechanisms and models in heart failure: a combinatorial approach. Circulation. 1999;100(9):999–1008.

    PubMed  CAS  Google Scholar 

  40. de Korte MA, de Vries EGE, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WTA, et al. 111Indium-Trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046–51.

    PubMed  Google Scholar 

  41. Grazette LP, Boecker W, Matsui T, Semigran M, Force TL, Hajjar RJ, et al. Inhibition of ErbB2 causes mitochondrial dysfunction in ­cardiomyocytes: implications for herceptin-induced ­cardiomyopathy. J Am Coll Cardiol. 2004;44(11):2231–8.

    PubMed  CAS  Google Scholar 

  42. Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83(6):679–86.

    PubMed  Google Scholar 

  43. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    PubMed  CAS  Google Scholar 

  44. Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood. 2007;110(4):1233–7.

    PubMed  CAS  Google Scholar 

  45. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16.

    PubMed  Google Scholar 

  46. Food & Drug Administration US. VELCADE ® prescribing information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021602s029s030lbl.pdf. Cited 14 Nov 2011.

  47. Fu HY, Minamino T, Tsukamoto O, Sawada T, Asai M, Kato H, et al. Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovasc Res. 2008;79(4):600–10.

    PubMed  CAS  Google Scholar 

  48. De Forni M, Malet-Martino MC, Jaillais P, Shubinski RE, Bachaud JM, Lemaire L, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10(11):1795–801.

    PubMed  Google Scholar 

  49. Van Cutsem E, Hoff PM, Blum JL, Abt M, Osterwalder B. Incidence of cardiotoxicity with the oral fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil [2]. Ann Oncol. 2002;13(3):484–5.

    PubMed  Google Scholar 

  50. Rezkalla S, Kloner RA, Ensley J, Al-Sarraf M, Revels S, Olivenstein A, et al. Continuous ambulatory ECG monitoring during fluorouracil therapy: a prospective study. J Clin Oncol. 1989;7(4):509–14.

    PubMed  CAS  Google Scholar 

  51. Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134(1):75–82.

    PubMed  CAS  Google Scholar 

  52. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8(2):191–202.

    PubMed  CAS  Google Scholar 

  53. Jones RL, Ewer MS. Cardiac and cardiovascular toxicity of nonanthracycline anticancer drugs. Expert Rev Anticancer Ther. 2006;6(9):1249–69.

    PubMed  CAS  Google Scholar 

  54. Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol. 2003;21(18):3542.

    PubMed  Google Scholar 

  55. Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232–9.

    PubMed  Google Scholar 

  56. Sugrue M, Yi J, Purdie D, Dong W, Grothey A, Kozloff M. Serious arterial thromboembolic events (sATE) in patients (pts) with metastatic colorectal cancer (mCRC) treated with bevacizumab (BV): Results from the BRiTE registry. Proc Am Soc Clin Oncol. 2007;25:4136.

    Google Scholar 

  57. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.

    PubMed  Google Scholar 

  58. Strevel EL, Ing DJ, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the qt interval. J Clin Oncol. 2007;25(22):3362–71.

    PubMed  CAS  Google Scholar 

  59. Ederhy S, Cohen A, Dufaitre G, Izzedine H, Massard C, Meuleman C, et al. QT interval prolongation among patients treated with angiogenesis inhibitors. Target Oncol. 2009;4(2):89–97.

    PubMed  Google Scholar 

  60. Morgan C, Tillett T, Braybrooke J, Ajithkumar T. Management of uncommon chemotherapy-induced emergencies. Lancet Oncol. 2011;12(8):806–14.

    PubMed  Google Scholar 

  61. Al-Khatib SM, Allen LaPointe NM, Kramer JM, Califf RM. What clinicians should know about the qt interval. J Am Med Assoc. 2003;289(16):2120–7.

    Google Scholar 

  62. Viskin S, Rosovski U, Sands AJ, Chen E, Kistler PM, Kalman JM, et al. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm. 2005;2(6):569–74.

    PubMed  Google Scholar 

  63. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.

    PubMed  CAS  Google Scholar 

  64. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA. 2000;97(22):12329–33.

    PubMed  CAS  Google Scholar 

  65. Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K  +  channel: target and antitarget strategies in drug development. Pharmacol Res. 2008;57(3):181–95.

    PubMed  CAS  Google Scholar 

  66. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline: the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs E14. 2005. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/Step4/E14_Guideline.pdf. Cited 17 Nov 2011.

  67. Fridericia LS. Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med Scand. 1920;53(1):489–506.

    Google Scholar 

  68. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–70.

    Google Scholar 

  69. Bazett HC. An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol. 1997;2(2):177–94.

    Google Scholar 

  70. Sagie A, Larson MG, Goldberg RJ, Bengtson JR, Levy D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70(7):797–801.

    PubMed  CAS  Google Scholar 

  71. Varterasian M, Fingert H, Agin M, Meyer M, Cooney M, Radivoyevitch T, et al. Consideration of QT/QTc interval data in a phase I study in patients with advanced cancer (multiple letters) [1]. Clin Cancer Res. 2004;10(17):5967–9.

    PubMed  Google Scholar 

  72. Davey P. How to correct the QT interval for the effects of heart rate in clinical studies. J Pharmacol Toxicol Methods. 2002;48(1):3–9.

    PubMed  CAS  Google Scholar 

  73. Bates SE, Rosing DR, Fojo T, Piekarz RL. Challenges of evaluating the cardiac effects of anticancer agents. Clin Cancer Res. 2006;12(13):3871–4.

    PubMed  CAS  Google Scholar 

  74. Yarnoz MJ, Curtis AB. More reasons why men and women are not the same (gender differences in electrophysiology and arrhythmias). Am J Cardiol. 2008;101(9):1291–6.

    PubMed  Google Scholar 

  75. Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine. 2003;82(4):282–90.

    PubMed  Google Scholar 

  76. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc. 2002;287(17):2215–20.

    Google Scholar 

  77. Sarapa N, Britto MR. Challenges of characterizing proarrhythmic risk due to QTc prolongaton induced by nonadjuvant anticancer agents. Expert Opin Drug Saf. 2008;7(3):305–18.

    PubMed  CAS  Google Scholar 

  78. Food and Drug Administration US. TASIGNA® Label information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022068s007lbl.pdf. Cited 14 Nov 2011.

  79. Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12(12):3762–73.

    PubMed  CAS  Google Scholar 

  80. Becker TK, Yeung SCJ. Drug-induced QT interval prolongation in cancer patients. Oncol Rev. 2010;4(4):223–32.

    Google Scholar 

  81. Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21(19):3609–15.

    PubMed  CAS  Google Scholar 

  82. Ohnishi K, Yoshida H, Shigeno K, Nakamura S, Fujisawa S, Naito K, et al. Arsenic trioxide therapy for relapsed or refractory Japanese patients with acute promyelocytic leukemia: need for careful electrocardiogram monitoring. Leukemia. 2002;16(4):617–22.

    PubMed  CAS  Google Scholar 

  83. Pudil R, Horacek J, Vojacek J, Jakl M. Anthracycline therapy induces very early increase in QT dispersion and QTc prolongation. Circulation. 2010;122(2):e385.

    Google Scholar 

  84. Munster PN, Rubin EH, Van Belle S, Friedman E, Patterson JK, Van Dyck K, et al. A single supratherapeutic dose of vorinostat does not prolong the QTc interval in patients with advanced cancer. Clin Cancer Res. 2009;15(22):7077–84.

    PubMed  CAS  Google Scholar 

  85. Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res. 2006;12(15):4628–35.

    PubMed  CAS  Google Scholar 

  86. Sharma S, Vogelzang N, Beck J, Patnaik A, Mita M, Dugan M. Phase I pharmacokinetic and pharmacodynamic study of once-weekly iv panobinostat (LBH589). ECCO Poster presented. 2007. p. 23–7.

    Google Scholar 

  87. Zhang L, Lebwohl D, Masson E, Laird G, Cooper MR, Prince HM. Clinically relevant QTc prolongation is not associated with current dose schedules of LBH589 (panobinostat) [1]. J Clin Oncol. 2008;26(2):332–3.

    PubMed  CAS  Google Scholar 

  88. De Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, Karavasilis V, et al. Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res. 2008;14(20):6663–73.

    PubMed  Google Scholar 

  89. Soto-Matos A, Szyldergemajn S, Extremera S, Miguel-Lillo B, Alfaro V, Coronado C, et al. Plitidepsin has a safe cardiac profile: a comprehensive analysis. Mar Drugs. 2011;9(6):1007–23.

    PubMed  CAS  Google Scholar 

  90. Tamura T, Minami H, Yamada Y, Yamamoto N, Shimoyama T, Murakami H, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1(9):1002–9.

    PubMed  Google Scholar 

  91. Heymach JV, Johnson BE, Prager D, Csada E, Roubec J, Pešek M, et al. Randomized, placebo-controlled phase II study of vandetanib plus docetaxel in previously treated non-small-cell lung cancer. J Clin Oncol. 2007;25(27):4270–7.

    PubMed  CAS  Google Scholar 

  92. Food and Drug Administration US. SUTENT®. Prescription information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021938s13s17s18lbl.pdf. Cited 14 Nov 2011.

  93. Hazarika M, Jiang X, Liu Q, Lee SL, Ramchandani R, Garnett C, et al. Tasigna for chronic and accelerated phase philadelphia chromosome-positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res. 2008;14(17):5325–31.

    PubMed  CAS  Google Scholar 

  94. Food and Drug Administration US. SPRYCEL® Prescribing information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021986s009s010lbl.pdf. Cited 14 Nov 2011.

  95. Johnson FM, Agrawal S, Burris H, Rosen L, Dhillon N, Hong D, et al. Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer. 2010;116(6):1582–91.

    PubMed  CAS  Google Scholar 

  96. Hanrahan EO, Kies MS, Glisson BS, Khuri FR, Feng L, Tran HT, et al. A phase II study of Lonafarnib (SCH66336) in patients with chemorefractory, advanced squamous cell carcinoma of the head and neck. Am J Clin Oncol. 2009;32(3):274–9. Epub 2009 May 13.

    PubMed  CAS  Google Scholar 

  97. Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res. 2002;62(12):3408–16.

    PubMed  CAS  Google Scholar 

  98. Kreisl TN, Kim L, Moore K, Duic P, Kotliarova S, Walling J, et al. A phase I trial of enzastaurin in patients with recurrent gliomas. Clin Cancer Res. 2009;15(10):3617–23.

    PubMed  CAS  Google Scholar 

  99. Rademaker-Lakhai JM, Beerepoot LV, Mehra N, Radema SA, Van Maanen R, Vermaat JS, et al. Phase I pharmacokinetic and pharmacodynamic studyof the oral protein kinase C β-inhibitor enzastaurin in combination with gemcitabine and cisplatinin patients with advanced cancer. Clin Cancer Res. 2007;13(15):4474–81.

    PubMed  CAS  Google Scholar 

  100. Kreisl TN, Kotliarova S, Butman JA, Albert PS, Kim L, Musib L, et al. A phase I/II trial of enzastaurin in patients with recurrent high-grade gliomas. Neuro Oncol. 2010;12(2):181–9. Epub 2010 Feb 13.

    PubMed  CAS  Google Scholar 

  101. Oh Y, Herbst RS, Burris H, Cleverly A, Musib L, Lahn M, et al. Enzastaurin, an oral serine/threonine kinase inhibitor, as second- or third-line therapy of non-small-cell lung cancer. J Clin Oncol. 2008;26(7):1135–41.

    PubMed  CAS  Google Scholar 

  102. Welch PA, Sinha VP, Cleverly AL, Darstein C, Flanagan SD, Musib LC. Safety, tolerability, QTc evaluation, and pharmacokinetics of single and multiple doses of enzastaurin HCl (LY317615), a Protein kinase C-β inhibitor, in healthy subjects. J Clin Pharmacol. 2007;47(9):1138–51.

    PubMed  CAS  Google Scholar 

  103. Camidge DR, Gail Eckhardt S, Gore L, O’Bryant CL, Leong S, Basche M, et al. A phase I safety, tolerability, and pharmacokinetic study of enzastaurin combined with capecitabine in patients with advanced solid tumors. Anticancer Drugs. 2008;19(1):77–84. Epub 2007 Nov 29.

    PubMed  CAS  Google Scholar 

  104. Garnick MB, Pratt CM, Campion M, Shipley J. The effect of hormonal therapy for prostate cancer on the electrocardiographic QT interval: phase 3 results following treatment with leuprolide and goserelin, alone or with bicalutamide, and the GnRH antagonist abarelix. ASCO meeting abstracts. 2004;22(14 suppl):4578.

    Google Scholar 

  105. Nousiainen T, Vanninen E, Rantala A, Jantunen E, Hartikainen J. QT dispersion and late potentials during doxorubicin therapy for non-Hodgkin’s lymphoma. J Intern Med. 1999;245(4):359–64. Epub 1999 June 5.

    PubMed  CAS  Google Scholar 

  106. Kuittinen T, Jantunen E, Vanninen E, Mussalo H, Nousiainen T, Hartikainen J. Late potentials and QT dispersion after high-dose chemotherapy in patients with non-Hodgkin lymphoma. Clin Physiol Funct Imaging. 2010;30(3):175–80. Epub 2010 Feb 6.

    PubMed  CAS  Google Scholar 

  107. Owczuk R, Wujtewicz MA, Sawicka W, Wujtewicz M, Swierblewski M. Is prolongation of the QTc interval during isoflurane anaesthesia more prominent in women pretreated with anthracyclines for breast cancer? Br J Anaesth. 2004;92(5):658–61. Epub 2004 Apr 6.

    PubMed  CAS  Google Scholar 

  108. Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol. 2001;19(18):3852–60.

    PubMed  CAS  Google Scholar 

  109. Stewart T, Pavlakis N, Ward M. Cardiotoxicity with 5-fluorouracil and capecitabine: more than just vasospastic angina. Intern Med J. 2010;40(4):303–7. Epub 2010 June 10.

    PubMed  CAS  Google Scholar 

  110. Wacker A, Lersch C, Scherpinski U, Reindl L, Seyfarth M. High incidence of angina pectoris in patients treated with 5-fluorouracil. A planned surveillance study with 102 patients. Oncology. 2003;65(2):108–12. Epub 2003 Aug 22.

    PubMed  CAS  Google Scholar 

  111. Nakamae H, Tsumura K, Hino M, Hayashi T, Tatsumi N. QT dispersion as a predictor of acute heart failure after high-dose cyclophosphamide. Lancet. 2000;355(9206):805–6.

    PubMed  CAS  Google Scholar 

  112. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003.

    PubMed  CAS  Google Scholar 

  113. Food and Drug Administration US. ISTODAX® Prescribing information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022393s006lbl.pdf. Cited 14 Nov 2011

  114. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al. Phase IIB multicenter trial of vorinostat in patients with ­persistent, progressive, or treatment refractory cutaneous t-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.

    PubMed  CAS  Google Scholar 

  115. Food and Drug Administration US. ZOLINZA® Prescribing information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021991s002lbl.pdf. Cited 14 Nov 2011.

  116. Wells S, Robinson B, Gagel R, Dralle H, Fagin J, Santoro M, et al., editors. Vandetanib (VAN) in locally advanced or metastatic medullary thyroid cancer (MTC): a randomized, double-blind phase III trial (ZETA). ASCO annual meeting, Chicago, 2010. Abstract 5503.

    Google Scholar 

  117. Food and Drug Administration US. CAPRELSA® (vandetanib) Tablets. Prescription information. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022405s001lbl.pdf. Cited 14 Nov 2011.

  118. Tabernero J, Dirix L, Schöfski P, Cervantes A, Lopez-Martin JA, Capdevila J, et al. A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res. 2011;17(19):6313–21.

    PubMed  CAS  Google Scholar 

  119. Slovacek L, Ansorgova V, Macingova Z, Haman L, Petera J. Tamoxifen-induced QT interval prolongation. J Clin Pharm Ther. 2008;33(4):453–5.

    PubMed  CAS  Google Scholar 

  120. Guglin M, Aljayeh M, Saiyad S, Ali R, Curtis AB. Introducing a new entity: chemotherapy-induced arrhythmia. Europace. 2009;11(12):1579–86.

    PubMed  Google Scholar 

  121. Rowinsky EK, Donehower RC. Drug therapy: paclitaxel (taxol). N Engl J Med. 1995;332(15):1004–14.

    PubMed  CAS  Google Scholar 

  122. Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9(9):1704–12.

    PubMed  CAS  Google Scholar 

  123. Food and Drug Administration US. ABRAXANE® for Injectable Suspension (paclitaxel protein-bound particles for injectable suspension) labeling revision. 2009. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021660s022lbl.pdf. Cited 14 Nov 2011.

  124. Talapatra K, Rajesh I, Rajesh B, Selvamani B, Subhashini J. Transient asymptomatic bradycardia in patients on infusional 5-fluorouracil. J Cancer Res Ther. 2007;3(3):169–71.

    PubMed  CAS  Google Scholar 

  125. Hashimi LA, Khalyl MF, Salem PA. Supraventricular tachycardia. A probable complication of platinum treatment. Oncology. 1984;41(3):174–5.

    PubMed  CAS  Google Scholar 

  126. Canobbio L, Fassio T, Gasparini G. Cardiac arrhythmia: possible complication from treatment with cisplatin. Tumori. 1986;72(2):201–4.

    PubMed  CAS  Google Scholar 

  127. Altundağ O, Çelik I, Kars A. Recurrent asymptomatic bradycardia episodes after cisplatin infusion. Ann Pharmacother. 2001;35(5):641–2.

    PubMed  Google Scholar 

  128. Lin LL, Picus J, Drebin JA, Linehan DC, Solis J, Strasberg SM, et al. A phase II study of alternating cycles of split course radiation therapy and gemcitabine chemotherapy for inoperable pancreatic or biliary tract carcinoma. Am J Clin Oncol. 2005;28(3):234–41.

    PubMed  CAS  Google Scholar 

  129. Gridelli C, Cigolari S, Gallo C, Manzione L, Ianniello GP, Frontini L, et al. Activity and toxicity of gemcitabine and gemcitabine  +  vinorelbine in advanced non-small-cell lung cancer elderly patients: phase II data from the Multicenter Italian Lung Cancer in the Elderly Study (MILES) randomized trial. Lung Cancer. 2001;31(2–3):277–84.

    PubMed  CAS  Google Scholar 

  130. Santini D, Tonini G, Abbate A, Di Cosimo S, Gravante G, Vincenzi B, et al. Gemcitabine-induced atrial fibrillation: a hitherto unreported manifestation of drug toxicity. Ann Oncol. 2000;11(4):479–81.

    PubMed  CAS  Google Scholar 

  131. Sauer-Heilborn A, Kath R, Schneider CP, Höffken K. Severe non-haematological toxicity after treatment with gemcitabine. J Cancer Res Clin Oncol. 1999;125(11):637–40.

    PubMed  CAS  Google Scholar 

  132. Zwitter M, Kovac V, Smrdel U, Kocijancic I, Segedin B, Vrankar M. Phase I-II trial of low-dose gemcitabine in prolonged infusion and cisplatin for advanced non-small cell lung cancer. Anticancer Drugs. 2005;16(10):1129–34.

    PubMed  CAS  Google Scholar 

  133. Kilickap S, Akgul E, Aksoy S, Aytemir K, Barista I. Doxorubicin-induced second degree and complete atrioventricular block. Europace. 2005;7(3):227–30.

    PubMed  Google Scholar 

  134. Kilickap S, Barista I, Akgul E, Aytemir K, Aksoy S, Tekuzman G. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100(3):262–5.

    PubMed  Google Scholar 

  135. Lee RE, Lotze MT, Skibber JM, Tucker E, Bonow RO, Ognibene FP, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol. 1989;7(1):7–20.

    PubMed  CAS  Google Scholar 

  136. Margolin KA, Raynor AA, Hawkins MJ, Atkins MB, Dutcher JP, Fisher RI, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol. 1989;7(4):486–98.

    PubMed  CAS  Google Scholar 

  137. Lonial S, Kaufman J, Tighiouart M, Nooka A, Langston AA, Heffner LT, et al. A Phase I/II trial combining high-dose melphalan and autologous transplant with bortezomib for multiple myeloma: a dose- and schedule-finding study. Clin Cancer Res. 2010;16(20):5079–86.

    PubMed  CAS  Google Scholar 

  138. Moreau P, Milpied N, Mahé B, Juge-Morineau N, Rapp MJ, Bataille R, et al. Melphalan 220 mg/m2 followed by peripheral blood stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant. 1999;23(10):1003–6.

    PubMed  CAS  Google Scholar 

  139. Phillips GL, Meisenberg B, Reece DE, Adams VR, Badros A, Brunner J, et al. Amifostine and autologous hematopoietic stem cell support of escalating-dose melphalan: a phase I study. Biol Blood Marrow Transplant. 2004;10(7):473–83.

    PubMed  CAS  Google Scholar 

  140. Mileshkin LR, Seymour JF, Wolf MM, Gates P, Januszewicz EH, Joyce P, et al. Cardiovascular toxicity is increased, but manageable, during high-dose chemotherapy and autologous peripheral blood stem cell transplantation for patients aged 60 years and older. Leuk Lymphoma. 2005;46(11):1575–9.

    PubMed  CAS  Google Scholar 

  141. Palumbo A, Bringhen S, Caravita T, Merla E, Capparella V, Callea V, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet. 2006;367(9513):825–31.

    PubMed  CAS  Google Scholar 

  142. Maitland ML, Kasza KE, Karrison T, Moshier K, Sit L, Black HR, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009;15(19):6250–7.

    PubMed  CAS  Google Scholar 

  143. Morere JF, Des Guetz G,Mourad J, Lévy BI, Breau J. Mechanism of bevacizumab-induced arterial hypertension: Relation with skin capillary rarefaction in patients treated for metastatic colorectal cancer. 2007 ASCO annual meeting. 2007:Abst 3557.

    Google Scholar 

  144. de Boer MP, van der Veldt AAM, Lankheet NA, Wijnstok NJ, van den Eertwegh AJM, Boven E, et al. Sunitinib-induced reduction in skin microvascular density is a reversible phenomenon. Ann Oncol. 2010;21(9):1923–4.

    PubMed  Google Scholar 

  145. Steeghs N, Gelderblom H, Roodt JO, Christensen O, Rajagopalan P, Hovens M, et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14(11):3470–6.

    PubMed  CAS  Google Scholar 

  146. Steeghs N, Rabelink TJ, op’t Roodt J, Batman E, Cluitmans FHM, Weijl NI, et al. Reversibility of capillary density after discontinuation of bevacizumab treatment. Ann Oncol. 2010;21(5):1100–5.

    PubMed  CAS  Google Scholar 

  147. van der Veldt AAM, de Boer MP, Boven E, Eringa EC, van den Eertwegh AJM, van Hinsbergh VW, et al. Reduction in skin microvascular density and changes in vessel morphology in patients treated with sunitinib. Anticancer Drugs. 2010;21(4):439–46. doi:10.1097/CAD.0b013e3283359c79.

    PubMed  Google Scholar 

  148. Demetri GD vOA, Blackstein M, Garrett C, Shah M, Heinrich M, McArthur G, Judson I, Baum CM, Casali PG. Phase 3, multicenter, randomized, double-blind, placebo-controlled trial of SU11248 in patients following failure of imatinib for metastatic GIST. ASCO annual meeting 2005. Abstract 4000.

    Google Scholar 

  149. Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, et al. Sunitinib in patients with metastatic renal cell carcinoma. J Am Med Assoc. 2006;295(21):2516–24.

    CAS  Google Scholar 

  150. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8.

    PubMed  CAS  Google Scholar 

  151. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21(1):60–5.

    PubMed  CAS  Google Scholar 

  152. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    PubMed  CAS  Google Scholar 

  153. Czaykowski PM, Moore MJ, Tannock IF. High risk of vascular events in patients with urothelial transitional cell carcinoma treated with cisplatin based chemotherapy. J Urol. 1998;160(6, Part 1):2021–4.

    PubMed  CAS  Google Scholar 

  154. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.

    PubMed  CAS  Google Scholar 

  155. Rajkumar SV. Thalidomide therapy and deep venous thrombosis in multiple myeloma. Mayo Clin Proc. 2005;80(12):1549–51.

    PubMed  Google Scholar 

  156. Rodeghiero F, Elice F. Thalidomide and thrombosis. Pathophysiol Haemost Thromb. 2003;33 Suppl 1:15–8.

    PubMed  Google Scholar 

  157. Food and Drug Administration US. TARCEVA® Prescribing information. 2010. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf. Cited 14 Nov 2011.

  158. Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.

    PubMed  CAS  Google Scholar 

  159. Deitcher SR, Gomes MPV. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: a systematic review. Cancer. 2004;101(3):439–49.

    PubMed  Google Scholar 

  160. Thürlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–57.

    PubMed  Google Scholar 

  161. Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22(15):3139–48.

    PubMed  Google Scholar 

  162. Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. J Am Med Assoc. 1993;270(16):1949–55.

    CAS  Google Scholar 

  163. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: Retrospective analysis of the childhood cancer survivor study cohort. BMJ. 2010;340(7736):34.

    Google Scholar 

  164. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ (Clin Res Ed). 2009;339: b4606.

    Google Scholar 

  165. Bovelli D, Plataniotis G, Roila F. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol. 2010;21 Suppl 5:v277–82.

    PubMed  Google Scholar 

  166. Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13(1):1–10.

    PubMed  Google Scholar 

  167. Cheng H, Force T. Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53(2):114–20.

    PubMed  CAS  Google Scholar 

  168. Fernandez A, Sanguino A, Peng Z, Ozturk E, Chen J, Crespo A, et al. An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest. 2007;117(12):4044–54.

    PubMed  CAS  Google Scholar 

  169. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline: the non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. S7B. 2005. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S7B/Step4/S7B_Guideline.pdf. Cited 14 Nov 2011

  170. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    PubMed  CAS  Google Scholar 

  171. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced ­cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    PubMed  CAS  Google Scholar 

  172. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving ­anthracyclines. Cochrane Database Syst Rev. 2005;(1):CD003917.

    Google Scholar 

  173. Food and Drug Administration US. ZINECARD® Approved Labeling. 2005. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020212s008lbl.pdf. Cited 14 Nov 2011.

  174. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    PubMed  CAS  Google Scholar 

  175. Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82(4):218–22.

    PubMed  CAS  Google Scholar 

  176. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(8):1405–10.

    PubMed  CAS  Google Scholar 

  177. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251(3):228–34.

    PubMed  CAS  Google Scholar 

  178. Suzuki T, Hayashi D, Yamazaki T, Mizuno T, Kanda Y, Komuro I, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J. 1998;136(2):362–3.

    PubMed  CAS  Google Scholar 

  179. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy. Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    PubMed  CAS  Google Scholar 

  180. Sieswerda E, van Dalen Elvira C, Postma A, Cheuk Daniel KL, Caron Huib N, Kremer Leontien CM. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev [Internet]. 2011;(9). Available from: http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD008011/frame.html.

  181. Lipshultz SE, Lipsitz SR, Sallan SE, Simbre 2nd VC, Shaikh SL, Mone SM, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    PubMed  CAS  Google Scholar 

  182. Rudzinski T, Ciesielczyk M, Religa W, Bednarkiewicz Z, Krzeminska-Pakula M. Doxorubicin-induced ventricular arrhythmia treated by implantation of an automatic cardioverter-defibrillator. Europace. 2007;9(5):278–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Braña M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Braña, I., Zamora, E., Tabernero, J. (2013). Cardiotoxicity. In: Dicato, M. (eds) Side Effects of Medical Cancer Therapy. Springer, London. https://doi.org/10.1007/978-0-85729-787-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-787-7_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-786-0

  • Online ISBN: 978-0-85729-787-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics