Skip to main content

Advertisement

Log in

Isoproterenol Cytotoxicity is Dependent on the Differentiation State of the Cardiomyoblast H9c2 Cell Line

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 21 July 2011

Abstract

H9c2 cells are used as a surrogate for cardiac cells in several toxicological studies, which are usually performed with cells in their undifferentiated state, raising questions on the applicability of the results to adult cardiomyocytes. Since H9c2 myoblasts have the capacity to differentiate into skeletal and cardiac muscle cells under different conditions, the hypothesis of the present work was that cells in different differentiation states differ in their susceptibility to toxicants. In order to test the hypothesis, the effects of the cardiotoxicant isoproterenol (ISO) were investigated. The present work demonstrates that differentiated H9c2 cells are more susceptible to ISO toxicity. Cellular content of beta1-adrenergic receptors (AR), beta3-AR, and calcineurin is decreased as cells differentiate, as opposed to the content on the mitochondrial voltage-dependent anion channel (VDAC) and phosphorylated p38-MAPK, which increase. After ISO treatment, the pro-apoptotic protein Bax increases in all experimental groups, although only undifferentiated myoblasts up-regulate the anti-apoptotic Bcl-2. Calcineurin is decreased in differentiated H9c2 cells, which suggests an important role against ISO-induced cell death. The results indicate that the differentiation state of H9c2 myoblasts influence ISO toxicity, which may involve calcineurin, p38-MAPK, and Bax/Bcl-2 alterations. The data also provide new insights into cardiovascular toxicology during early development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  2. Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.

    PubMed  CAS  Google Scholar 

  3. Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.

    Article  PubMed  CAS  Google Scholar 

  4. Schopf, G., Rumpold, H., & Muller, M. M. (1986). Alterations of purine salvage pathways during differentiation of rat heart myoblasts towards myocytes. Biochimica et Biophysica Acta, 884, 319–325.

    PubMed  CAS  Google Scholar 

  5. Hammes, A., Oberdorf, S., Strehler, E. E., Stauffer, T., Carafoli, E., Vetter, H., et al. (1994). Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB Journal, 8, 428–435.

    PubMed  CAS  Google Scholar 

  6. Hunter, A. L., Zhang, J., Chen, S. C., Si, X., Wong, B., Ekhterae, D., et al. (2007). Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Letter, 581, 879–884.

    Article  CAS  Google Scholar 

  7. Bregant, E., Renzone, G., Lonigro, R., Passon, N., Di Loreto, C., Pandolfi, M., et al. (2009). Down-regulation of SM22/transgelin gene expression during H9c2 cells differentiation. Molecular and Cellular Biochemistry, 327, 145–152.

    Article  PubMed  CAS  Google Scholar 

  8. Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., & Lory, P. (1999). Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. Journal of Biological Chemistry, 274, 29063–29070.

    Article  PubMed  CAS  Google Scholar 

  9. Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2007). Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—Characterization of morphological features of cell death. BMC Cell Biology, 8, 11.

    Article  PubMed  Google Scholar 

  10. Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemotherapy and Pharmacology, 64, 811–827.

    Article  PubMed  CAS  Google Scholar 

  11. Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.

    Article  PubMed  CAS  Google Scholar 

  12. Lund, K. C., & Wallace, K. B. (2004). Direct effects of nucleoside reverse transcriptase inhibitors on rat cardiac mitochondrial bioenergetics. Mitochondrion, 4, 193–202.

    Article  PubMed  CAS  Google Scholar 

  13. Saito, S., Hiroi, Y., Zou, Y., Aikawa, R., Toko, H., Shibasaki, F., et al. (2000). beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. Journal of Biological Chemistry, 275, 34528–34533.

    Article  PubMed  CAS  Google Scholar 

  14. Shizukuda, Y., & Buttrick, P. M. (2002). Subtype specific roles of beta-adrenergic receptors in apoptosis of adult rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 34, 823–831.

    Article  PubMed  CAS  Google Scholar 

  15. Dangel, V., Giray, J., Ratge, D., & Wisser, H. (1996). Regulation of beta-adrenoceptor density and mRNA levels in the rat heart cell-line H9c2. Biochemical Journal, 317(Pt 3), 925–931.

    PubMed  CAS  Google Scholar 

  16. Colucci, W. S., Sawyer, D. B., Singh, K., & Communal, C. (2000). Adrenergic overload and apoptosis in heart failure: Implications for therapy. Journal of Cardiac Failure, 6, 1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Singh, K., Communal, C., Sawyer, D. B., & Colucci, W. S. (2000). Adrenergic regulation of myocardial apoptosis. Cardiovascular Research, 45, 713–719.

    Article  PubMed  CAS  Google Scholar 

  18. Goldspink, D. F., Burniston, J. G., & Tan, L. B. (2003). Cardiomyocyte death and the ageing and failing heart. Experimental Physiology, 88, 447–458.

    Article  PubMed  CAS  Google Scholar 

  19. Houghton, P., Fang, R., Techatanawat, I., Steventon, G., Hylands, P. J., & Lee, C. C. (2007). The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods, 42, 377–387.

    Article  PubMed  CAS  Google Scholar 

  20. Pereira, G. C., Branco, A. F., Matos, J. A., Pereira, S. L., Parke, D., Perkins, E. L., et al. (2007). Mitochondrially targeted effects of berberine [Natural Yellow 18,5,6-dihydro-9, 10-dimethoxybenzo(g)-1,3-benzodioxolo(5, 6-a) quinolizinium] on K1735–M2 mouse melanoma cells: comparison with direct effects on isolated mitochondrial fractions. Journal of Pharmacology and Experimental Therapeutics, 323, 636–649.

    Article  PubMed  CAS  Google Scholar 

  21. Serafim, T. L., Oliveira, P. J., Sardao, V. A., Perkins, E., Parke, D., & Holy, J. (2008). Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemotherapy and Pharmacology, 61, 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  22. Kageyama, K., Ihara, Y., Goto, S., Urata, Y., Toda, G., Yano, K., et al. (2002). Overexpression of calreticulin modulates protein kinase B/Akt signaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. Journal of Biological Chemistry, 277, 19255–19264.

    Article  PubMed  CAS  Google Scholar 

  23. Brostrom, M. A., Reilly, B. A., Wilson, F. J., & Brostrom, C. O. (2000). Vasopressin-induced hypertrophy in H9c2 heart-derived myocytes. International Journal of Biochemistry and Cell Biology, 32, 993–1006.

    Article  PubMed  CAS  Google Scholar 

  24. Hou, Q., & Hsu, Y. T. (2005). Bax translocates from cytosol to mitochondria in cardiac cells during apoptosis: development of a GFP-Bax-stable H9c2 cell line for apoptosis analysis. American Journal of Physiology. Heart and Circulatory Physiology, 289, H477–H487.

    Article  PubMed  CAS  Google Scholar 

  25. Kim, J. Y., Lee, J. J., & Kim, K. S. (2003). Acetyl-CoA carboxylase beta expression mediated by MyoD and muscle regulatory factor 4 is differentially affected by retinoic acid receptor and retinoid X receptor. Exp Mol Med, 35, 23–29.

    PubMed  Google Scholar 

  26. Kuzmenkin, A., Liang, H., Xu, G., Pfannkuche, K., Eichhorn, H., Fatima, A., et al. (2009). Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB Journal, 23, 4168–4180.

    Article  PubMed  CAS  Google Scholar 

  27. Decker, R. S., Rines, A. K., Nakamura, S., Naik, T. J., Wassertsrom, J. A., & Ardehali, H. (2009). Phosphorylation of contractile proteins in response to alpha- and beta-adrenergic stimulation in neonatal cardiomyocytes. Translational Research, 155, 27–34.

    Article  Google Scholar 

  28. Zhou, B., Wu, L. J., Tashiro, S., Onodera, S., Uchiumi, F., & Ikejima, T. (2007). Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent. Acta Pharmacologica Sinica, 28, 803–810.

    Article  PubMed  CAS  Google Scholar 

  29. Shoshan-Barmatz, V., Keinan, N., & Zaid, H. (2008). Uncovering the role of VDAC in the regulation of cell life and death. Journal of Bioenergetics and Biomembranes, 40, 183–191.

    Article  PubMed  CAS  Google Scholar 

  30. Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta, 1588, 94–101.

    PubMed  CAS  Google Scholar 

  31. Spallarossa, P., Garibaldi, S., Altieri, P., Fabbi, P., Manca, V., Nasti, S., et al. (2004). Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology, 37, 837–846.

    Article  PubMed  CAS  Google Scholar 

  32. Yu, X. Y., Geng, Y. J., Liang, J. L., Lin, Q. X., Lin, S. G., Zhang, S., et al. (2010). High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Experimental Cell Research, 316, 2903–2909.

    Article  PubMed  CAS  Google Scholar 

  33. Watkins, S. J., Borthwick, G. M., & Arthur, H. M. (2010). The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In vitro cellular & developmental biology. Animal, 47(2), 125–131.

    Google Scholar 

  34. De Angelis, A., Piegari, E., Cappetta, D., Marino, L., Filippelli, A., Berrino, L. et al. (2009). Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121, 276–292.

    Google Scholar 

  35. Remiao, F., Carmo, H., Carvalho, F., & Bastos, M. L. (2001). Copper enhances isoproterenol toxicity in isolated rat cardiomyocytes: Effects on oxidative stress. Cardiovascular Toxicology, 1, 195–204.

    Article  PubMed  CAS  Google Scholar 

  36. Brodde, O. E. (1988). The functional importance of beta 1 and beta 2 adrenoceptors in the human heart. American Journal of Cardiology, 62, 24C–29C.

    Article  PubMed  CAS  Google Scholar 

  37. Communal, C., Singh, K., Sawyer, D. B., & Colucci, W. S. (1999). Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : Role of a pertussis toxin-sensitive G protein. Circulation, 100, 2210–2212.

    PubMed  CAS  Google Scholar 

  38. Li, J., Yan, B., Huo, Z., Liu, Y., Xu, J., Sun, Y., et al. (2010). Beta2- but not beta1-adrenoceptor activation modulates intracellular oxygen availability. Journal of Physiology, 588, 2987–2998.

    Article  PubMed  CAS  Google Scholar 

  39. El-Armouche, A., & Eschenhagen, T. (2009). Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Failure Reviews, 14, 225–241.

    Article  PubMed  CAS  Google Scholar 

  40. Dessy, C., & Balligand, J. L. (2010). Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Advances in Pharmacology, 59, 135–163.

    Article  PubMed  CAS  Google Scholar 

  41. York, M., Scudamore, C., Brady, S., Chen, C., Wilson, S., Curtis, M., et al. (2007). Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicologic Pathology, 35, 606–617.

    Article  PubMed  CAS  Google Scholar 

  42. Del Carlo, C. H., Pereira-Barretto, A. C., Cassaro-Strunz, C. M., Latorre Mdo, R., Oliveira Junior, M. T., & Ramires, J. A. (2009). Cardiac troponin T for risk stratification in decompensated chronic heart failure. Arquivos brasileiros de cardiologia, 92(5), 372–380, 389–397, 404–412.

    Google Scholar 

  43. Halestrap, A. P., McStay, G. P., & Clarke, S. J. (2002). The permeability transition pore complex: Another view. Biochimie, 84, 153–166.

    Article  PubMed  CAS  Google Scholar 

  44. Jacobson, J., & Duchen, M. R. (2002). Mitochondrial oxidative stress and cell death in astrocytes—requirement for stored Ca2+ and sustained opening of the permeability transition pore. Journal of Cell Science, 115, 1175–1188.

    PubMed  CAS  Google Scholar 

  45. Sharaf El Dein, O., Gallerne, C., Deniaud, A., Brenner, C., & Lemaire, C. (2009). Role of the permeability transition pore complex in lethal inter-organelle crosstalk. Front Biosci, 14, 3465–3482.

    Article  PubMed  Google Scholar 

  46. Biary, N., & Akar, F. G. (2010). A brighter side of ROS revealed by selective activation of beta-adrenergic receptor subtypes. Journal of Physiology, 588, 2973–2974.

    Article  PubMed  CAS  Google Scholar 

  47. Rong, Y., & Distelhorst, C. W. (2008). Bcl-2 protein family members: Versatile regulators of calcium signaling in cell survival and apoptosis. Annual Review of Physiology, 70, 73–91.

    Article  PubMed  CAS  Google Scholar 

  48. Fiedler, B., & Wollert, K. C. (2005). Targeting calcineurin and associated pathways in cardiac hypertrophy and failure. Expert Opinion on Therapeutic Targets, 9, 963–973.

    Article  PubMed  CAS  Google Scholar 

  49. Ullrich, V., Namgaladze, D., & Frein, D. (2003). Superoxide as inhibitor of calcineurin and mediator of redox regulation. Toxicology Letters, 139, 107–110.

    Article  PubMed  CAS  Google Scholar 

  50. Sayen, M. R., Gustafsson, A. B., Sussman, M. A., Molkentin, J. D., & Gottlieb, R. A. (2003). Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. American Journal of Physiology. Cell Physiology, 284, C562–C570.

    PubMed  CAS  Google Scholar 

  51. Aramburu, J., Heitman, J., & Crabtree, G. R. (2004). Calcineurin: A central controller of signalling in eukaryotes. EMBO Report, 5, 343–348.

    Article  CAS  Google Scholar 

  52. De Windt, L. J., Lim, H. W., Taigen, T., Wencker, D., Condorelli, G., Dorn, G. W., 2nd, et al. (2000). Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circulation Research, 86, 255–263.

    PubMed  Google Scholar 

  53. Lim, M. J., Seo, Y. H., Choi, K. J., Cho, C. H., Kim, B. S., Kim, Y. H., et al. (2007). Suppression of c-Src activity stimulates muscle differentiation via p38 MAPK activation. Archives of Biochemistry and Biophysics, 465, 197–208.

    Article  PubMed  CAS  Google Scholar 

  54. Zetser, A., Gredinger, E., & Bengal, E. (1999). p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. Journal of Biological Chemistry, 274, 5193–5200.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, Z., Woodring, P. J., Bhakta, K. S., Tamura, K., Wen, F., Feramisco, J. R., et al. (2000). p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Molecular and Cellular Biology, 20, 3951–3964.

    Article  PubMed  CAS  Google Scholar 

  56. Tsang, M. Y., & Rabkin, S. W. (2009). p38 mitogen-activated protein kinase (MAPK) is activated by noradrenaline and serves a cardioprotective role, whereas adrenaline induces p38 MAPK dephosphorylation. Clinical and Experimental Pharmacology and Physiology, 36, e12–e19.

    Article  PubMed  CAS  Google Scholar 

  57. Clements, P., Brady, S., York, M., Berridge, B., Mikaelian, I., Nicklaus, R., et al. (2010). Time course characterization of serum cardiac troponins, heart fatty acid-binding protein, and morphologic findings with isoproterenol-induced myocardial injury in the rat. Toxicologic Pathology, 38, 703–714.

    Article  PubMed  CAS  Google Scholar 

  58. Feng, W., & Li, W. (2010). The study of ISO induced heart failure rat model. Experimental and Molecular Pathology, 88, 299–304.

    Article  PubMed  CAS  Google Scholar 

  59. Heather, L. C., Catchpole, A. F., Stuckey, D. J., Cole, M. A., Carr, C. A., & Clarke, K. (2009). Isoproterenol induces in vivo functional and metabolic abnormalities: similar to those found in the infarcted rat heart. Journal of Physiology and Pharmacology, 60, 31–39.

    PubMed  CAS  Google Scholar 

  60. Slotkin, T. A., Lappi, S. E., & Seidler, F. J. (1995). Beta-adrenergic control of c-fos expression in fetal and neonatal rat tissues: relationship to cell differentiation and teratogenesis. Toxicology and Applied Pharmacology, 133, 188–195.

    Article  PubMed  CAS  Google Scholar 

  61. Iwasaki, T., Takino, Y., & Suzuki, T. (1990). Effects of isoproterenol on the developing heart in rats. Japanese Circulation Journal, 54, 109–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Kendall B. Wallace (University of Minnesota, Medical School, Duluth, USA) for useful discussions and for providing initial funding for this study. This work was supported by a research grant from the Portuguese Foundation for Science and Technology (FCT), reference PTDC/QUI/64358/2006, to Paulo J. Oliveira. Ana Branco, Carolina Moreira, Sandro Pereira, and Vilma Sardão are supported by fellowships from the FCT (SFRH/BD/41384/2007, SFRH/BD/33892/2009, SFRH/BD/37933/2007, and SFRH/BPD/31549/2006, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Oliveira.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12012-011-9131-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branco, A.F., Pereira, S.L., Moreira, A.C. et al. Isoproterenol Cytotoxicity is Dependent on the Differentiation State of the Cardiomyoblast H9c2 Cell Line. Cardiovasc Toxicol 11, 191–203 (2011). https://doi.org/10.1007/s12012-011-9111-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9111-5

Keywords

Navigation