Skip to main content

Cardiovascular Complications of Chemotherapy: Anthracycline Cardiotoxicity

  • Chapter
  • First Online:
Evidence-Based Cardiology Consult

Abstract

The anthracycline chemotherapeutic agents (doxorubicin, idarubicin, epirubicin) continue to play an important role in the treatment of certain malignancies. Their efficacy in treating cancer is related to the cumulative dose. Unfortunately, the risk of developing cardiotoxicity from these agents is also related to the cumulative dose. In this review, the incidence of anthracycline-mediated cardiotoxicity, the cellular mechanisms responsible for the cardiotoxicity, methods to detect cardiotoxicity, and strategies to treat and, more importantly, prevent the cardiotoxicity are discussed. Through close communication between the consulting cardiologist and the oncologist, a treatment plan can be developed that maximizes the tumoricidal activity of anthracyclines while minimizing the risk of cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan C, et al. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20(3):333–53.

    Article  PubMed  CAS  Google Scholar 

  2. Di Marco A, Cassinelli G, Arcamone F. The discovery of daunorubicin. Cancer Treat Rep. 1981;65 Suppl 4:3–8.

    PubMed  Google Scholar 

  3. Lefrak EA, et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–14.

    Article  PubMed  CAS  Google Scholar 

  4. Von Hoff DD, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.

    Article  Google Scholar 

  5. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869–79.

    Article  PubMed  CAS  Google Scholar 

  6. Lipshultz SE, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–43.

    Article  PubMed  CAS  Google Scholar 

  7. Dranitsaris G, et al. The development of a predictive model to estimate cardiotoxic risk for patients with metastatic breast cancer receiving anthracyclines. Breast Cancer Res Treat. 2008;107(3):443–50.

    Article  PubMed  CAS  Google Scholar 

  8. Abu-Khalaf MM, et al. Long-term assessment of cardiac function after dose-dense and -intense sequential doxorubicin (A), paclitaxel (T), and cyclophosphamide (C) as adjuvant therapy for high risk breast cancer. Breast Cancer Res Treat. 2007;104(3):341–9.

    Article  PubMed  CAS  Google Scholar 

  9. Lipshultz SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629–36.

    Article  PubMed  CAS  Google Scholar 

  10. Kremer LC, et al. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol. 2001;19(1):191–6.

    PubMed  CAS  Google Scholar 

  11. Mulrooney DA, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  PubMed  Google Scholar 

  12. Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 1998;25(4 Suppl 10):72–85.

    PubMed  CAS  Google Scholar 

  13. Billingham ME, et al. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep. 1978;62(6):865–72.

    PubMed  CAS  Google Scholar 

  14. Bristow MR, et al. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Ann Intern Med. 1978;88(2):168–75.

    Article  PubMed  CAS  Google Scholar 

  15. Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261(7):3060–7.

    PubMed  CAS  Google Scholar 

  16. Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261(7):3068–74.

    PubMed  CAS  Google Scholar 

  17. Kotamraju S, et al. Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem. 2002;277(19):17179–87.

    Article  PubMed  CAS  Google Scholar 

  18. Minotti G, et al. Doxorubicin cardiotoxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol. 2004;378:340–61.

    Article  PubMed  CAS  Google Scholar 

  19. Kang YJ, et al. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem. 2000;275(18):13690–8.

    Article  PubMed  CAS  Google Scholar 

  20. Grethe S, et al. p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis. Biochem Biophys Res Commun. 2006;347(3):781–90.

    Article  PubMed  CAS  Google Scholar 

  21. Chua CC, et al. Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol. 2006;290(6):H2606–13.

    Article  PubMed  CAS  Google Scholar 

  22. Wu W, et al. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem. 2000;275(51):40113–9.

    Article  PubMed  CAS  Google Scholar 

  23. Wang L, et al. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998;83(5):516–22.

    Article  PubMed  CAS  Google Scholar 

  24. Bristow MR, et al. Early anthracycline cardiotoxicity. Am J Med. 1978;65(5):823–32.

    Article  PubMed  CAS  Google Scholar 

  25. Buzdar AU, et al. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer. 1985;55(12):2761–5.

    Article  PubMed  CAS  Google Scholar 

  26. Hayek ER, Speakman E, Rehmus E. Acute doxorubicin cardiotoxicity. N Engl J Med. 2005;352(23):2456–7.

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez SF, Basra M, Canty JM. Takotsubo cardiomyopathy following initial chemotherapy presenting with syncope and cardiogenic shock – a case report and literature review. J Clin Exp Cardiol. 2001;2:124.

    Google Scholar 

  28. Dowd NP, et al. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest. 2001;108(4):585–90.

    PubMed  CAS  Google Scholar 

  29. Kotamraju S, et al. Oxidant-induced iron signaling in doxorubicin-mediated apoptosis. Methods Enzymol. 2004;378:362–82.

    Article  PubMed  CAS  Google Scholar 

  30. Kotamraju S, et al. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem. 2000;275(43):33585–92.

    Article  PubMed  CAS  Google Scholar 

  31. Einstein AJ, et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305.

    Article  PubMed  Google Scholar 

  32. Corapcioglu F, et al. Evaluation of anthracycline-induced early left ventricular dysfunction in children with cancer: a comparative study with echocardiography and multigated radionuclide angiography. Pediatr Hematol Oncol. 2006;23(1):71–80.

    Article  PubMed  CAS  Google Scholar 

  33. Fatima N, et al. Assessing adriamycin-induced early cardiotoxicity by estimating left ventricular ejection fraction using technetium-99m multiple-gated acquisition scan and echocardiography. Nucl Med Commun. 2011;32(5):381–5.

    Article  PubMed  CAS  Google Scholar 

  34. Walker J, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28(21):3429–36.

    Article  PubMed  Google Scholar 

  35. Schwartz RG, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82(6):1109–18.

    Article  PubMed  CAS  Google Scholar 

  36. Stoodley PW, et al. Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. Eur J Echocardiogr. 2011;12(12):945–52.

    Article  PubMed  Google Scholar 

  37. Ganame J, et al. Acute cardiac functional and morphological changes after Anthracycline infusions in children. Am J Cardiol. 2007;99(7):974–7.

    Article  PubMed  CAS  Google Scholar 

  38. Ganame J, et al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr. 2007;20(12):1351–8.

    Article  PubMed  Google Scholar 

  39. Cottin Y, et al. Impairment of diastolic function during short-term anthracycline chemotherapy. Br Heart J. 1995;73(1):61–4.

    Article  PubMed  CAS  Google Scholar 

  40. Alcan KE, et al. Early detection of anthracycline-induced cardiotoxicity by stress radionuclide cineangiography in conjunction with Fourier amplitude and phase analysis. Clin Nucl Med. 1985;10(3):160–6.

    Article  PubMed  CAS  Google Scholar 

  41. Mason JW, et al. Invasive and noninvasive methods of assessing adriamycin cardiotoxic effects in man: superiority of histopathologic assessment using endomyocardial biopsy. Cancer Treat Rep. 1978;62(6):857–64.

    PubMed  CAS  Google Scholar 

  42. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5.

    Article  PubMed  CAS  Google Scholar 

  43. Cooper LT, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116(19):2216–33.

    Article  PubMed  Google Scholar 

  44. Cardinale D, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    Article  PubMed  CAS  Google Scholar 

  45. Cardinale D, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13(5):710–5.

    Article  PubMed  CAS  Google Scholar 

  46. Cardinale D, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  PubMed  CAS  Google Scholar 

  47. Clark SJ, et al. Cardiac troponin T following anthracycline chemotherapy in children and adolescents. J Chemother. 2007;19(3):332–4.

    PubMed  CAS  Google Scholar 

  48. Duan S, et al. Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res. 2007;67(11):5425–33.

    Article  PubMed  CAS  Google Scholar 

  49. Wojnowski L, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112(24):3754–62.

    Article  PubMed  CAS  Google Scholar 

  50. Blanco JG, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer. 2008;112(12):2789–95.

    Article  PubMed  Google Scholar 

  51. Jessup M, et al. 2009 Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):1977–2016.

    Article  PubMed  Google Scholar 

  52. Cardinale D, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    Article  PubMed  CAS  Google Scholar 

  53. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13(5):699–709.

    Article  PubMed  CAS  Google Scholar 

  54. Lipshultz SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  PubMed  CAS  Google Scholar 

  55. Fazio S, et al. Doxorubicin-induced cardiomyopathy treated with carvedilol. Clin Cardiol. 1998;21(10):777–9.

    Article  PubMed  CAS  Google Scholar 

  56. Mukai Y, et al. Five cases of anthracycline-induced cardiomyopathy effectively treated with carvedilol. Intern Med. 2004;43(11):1087–8.

    Article  PubMed  Google Scholar 

  57. Shaddy RE, et al. Efficacy and safety of metoprolol in the treatment of doxorubicin-induced cardiomyopathy in pediatric patients. Am Heart J. 1995;129(1):197–9.

    Article  PubMed  CAS  Google Scholar 

  58. Noori A, et al. Beta-blockade in adriamycin-induced cardiomyopathy. J Card Fail. 2000;6(2):115–9.

    PubMed  CAS  Google Scholar 

  59. Tallaj JA, et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 2005;24(12):2196–201.

    Article  PubMed  Google Scholar 

  60. Safra T, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11(8):1029–33.

    Article  PubMed  CAS  Google Scholar 

  61. O’Brien ME, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.

    Article  PubMed  Google Scholar 

  62. Halm U, et al. A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann Oncol. 2000;11(1):113–4.

    Article  PubMed  CAS  Google Scholar 

  63. Berthiaume JM, et al. Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol. 2005;5(3):257–67.

    Article  PubMed  CAS  Google Scholar 

  64. Bjelogrlic SK, et al. Activity of d, l-alpha-tocopherol (vitamin E) against cardiotoxicity induced by doxorubicin and doxorubicin with cyclophosphamide in mice. Basic Clin Pharmacol Toxicol. 2005;97(5):311–9.

    Article  PubMed  CAS  Google Scholar 

  65. Ladas EJ, et al. Antioxidants and cancer therapy: a systematic review. J Clin Oncol. 2004;22(3):517–28.

    Article  PubMed  CAS  Google Scholar 

  66. Swain SM, et al. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol. 1997;15(4):1333–40.

    PubMed  CAS  Google Scholar 

  67. Swain SM, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15(4):1318–32.

    PubMed  CAS  Google Scholar 

  68. Trachtenberg BH, et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32(3):342–53.

    Article  PubMed  Google Scholar 

  69. Hensley ML, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27(1):127–45.

    Article  PubMed  CAS  Google Scholar 

  70. Cardinale D, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  PubMed  CAS  Google Scholar 

  71. Kalay N, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond R. Russell III MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Russell, R.R. (2014). Cardiovascular Complications of Chemotherapy: Anthracycline Cardiotoxicity. In: Stergiopoulos, K., Brown, D. (eds) Evidence-Based Cardiology Consult. Springer, London. https://doi.org/10.1007/978-1-4471-4441-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4441-0_26

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4440-3

  • Online ISBN: 978-1-4471-4441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics