Skip to main content
Log in

Selenium Deficiency Leads to Changes in Renal Fibrosis Marker Proteins and Wnt/β-Catenin Signaling Pathway Components

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Renal fibrosis is the final result of the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). Earlier studies confirmed that selenium (Se) displays a close association with kidney diseases. However, the correlation between Se and fibrosis has rarely been explored. Thus, this article mainly aimed to investigate the effect of Se deficiency on renal fibrosis and the Wnt/β-catenin signaling pathway. Twenty BALB/c mice were fed a diet containing 0.02-mg/kg Se (Se-deficient diet) or 0.18-mg/kg Se (standard diet) for 20 weeks. A human glomerular mesangial cell (HMC) cell line was transfected with lentiviral TRNAU1AP-shRNA vector to establish a stable Se deficiency model in vitro. As indicated in this study, the glutathione (GSH) content in the Se-deficient group displayed an obvious decline compared with that in the control group, whereas the content of malondialdehyde (MDA) was obviously elevated. The results of Masson staining showed fibrosis around the renal tubules, and the results of immunohistochemistry showed that the area of positive fibronectin expression increased. In the Se-deficient group, the levels of collagen I, collagen III, matrix metalloproteinase 9 (MMP9), and other fibrosis-related proteins changed significantly in vivo and in vitro. Compared with the control group, the TRNAU1AP-shRNA group showed markedly reduced cell proliferation and migration abilities. Our data indicate that Se deficiency can cause kidney damage and renal fibrosis. Furthermore, the Wnt pathway is critical for the development of tissue and organ fibrosis. The data of this study demonstrated that the expression of Wnt5a, β-catenin, and dishevelled 1 (Dvl-1) was significantly upregulated in the Se-deficient group. Therefore, the Wnt/β-catenin pathway may play an important role in renal fibrosis caused by Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schwarz K, Foltz CM (1999) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Nutrition 15:255

    CAS  PubMed  Google Scholar 

  2. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    Article  CAS  PubMed  Google Scholar 

  3. Zachara BA (2015) Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv Clin Chem 68:131–151

    Article  CAS  PubMed  Google Scholar 

  4. Kilinc M, Guven MA, Ezer M, Ertas IE, Coskun A (2008) Evaluation of serum selenium levels in Turkish women with gestational diabetes mellitus, glucose intolerants, and normal controls. Biol Trace Elem Res 123:35–40

    Article  CAS  PubMed  Google Scholar 

  5. Zhou H, Wang T, Li Q, Li D (2018) Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis. Biol Trace Elem Res 186:98–105

    Article  CAS  PubMed  Google Scholar 

  6. Xu XM, Carlson BA, Zhang Y, Mix H, Kryukov GV, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL (2007) New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea. Biol Trace Elem Res 119:234–241

    Article  CAS  PubMed  Google Scholar 

  7. Seale LA, Gilman CL, Moorman BP, Berry MJ, Grau EG, Seale AP (2014) Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus. J Trace Elem Med Biol 28:284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cassago A, Rodrigues EM, Prieto EL, Gaston KW, Alfonzo JD, Iribar MP, Berry MJ, Cruz AK, Thiemann OH (2006) Identification of Leishmania selenoproteins and SECIS element. Mol Biochem Parasitol 149:128–134

    Article  CAS  PubMed  Google Scholar 

  9. Mahdi Y, Xu XM, Carlson BA, Fradejas N, Günter P, Braun D, Southon E, Tessarollo L, Hatfield DL, Schweizer U (2015) Expression of selenoproteins is maintained in mice carrying mutations in SECp43, the tRNA selenocysteine 1 associated protein (Trnau1ap). PLoS One 10:e0127349

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu XM, Mix H, Carlson BA, Grabowski PJ, Gladyshev VN, Berry MJ, Hatfield DL (2005) Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J Biol Chem 280:41568–41575

    Article  CAS  PubMed  Google Scholar 

  11. Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Mansell JB, Harney JW, Carlson BA, Xu XM, Hatfield DL, Berry MJ (2006) Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol 26:2337–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen LL, Huang JQ, Xiao Y, Wu YY, Ren FZ, Lei XG (2020) Knockout of selenoprotein V affects regulation of selenoprotein expression by dietary selenium and fat intakes in mice. J Nutr 150:483–491

    Article  PubMed  Google Scholar 

  13. Hu X, Luo J, Lai H, Li M, Zheng X, Nie T, Li F, Li H (2018) Knockdown of TRNAU1AP inhibits the proliferation and migration of NIH3T3, JEG-3 and Bewo cells via the PI3K/Akt signaling pathway. Biochem Biophys Res Commun 503:521–527

    Article  CAS  PubMed  Google Scholar 

  14. Lai H, Nie T, Zhang Y, Chen Y, Tao J, Lin T, Ge T, Li F, Li H (2021) Selenium deficiency-induced damage and altered expression of mitochondrial biogenesis markers in the kidneys of mice. Biol Trace Elem Res 199:185–196

    Article  CAS  PubMed  Google Scholar 

  15. Thomson CD, Packer MA, Butler JA, Duffield AJ, O'Donaghue KL, Whanger PD (2001) Urinary selenium and iodine during pregnancy and lactation. J Trace Elem Med Biol 14:210–217

    Article  CAS  PubMed  Google Scholar 

  16. Zachara BA, Salak A, Koterska D, Manitius J, Wasowicz W (2004) Selenium and glutathione peroxidases in blood of patients with different stages of chronic renal failure. J Trace Elem Med Biol 17:291–299

  17. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    Article  CAS  Google Scholar 

  18. Guo CH, Wang CL, Chen PC, Yang TC (2011) Linkage of some trace elements, peripheral blood lymphocytes, inflammation, and oxidative stress in patients undergoing either hemodialysis or peritoneal dialysis. Perit Dial Int 31:583–591

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, He W, Zhu X, Yang S, Yu T, Ma W (2020) Epidemiological study of kidney health in an area with high levels of soil cadmium and selenium: does selenium protect against cadmium-induced kidney injury? Sci Total Environ 698:134106

    Article  CAS  PubMed  Google Scholar 

  20. Yang L (2019) How acute kidney injury contributes to renal fibrosis. Adv Exp Med Biol 1165:117–142

    Article  CAS  PubMed  Google Scholar 

  21. Shrestha A, Che RC, Zhang AH (2019) Role of aldosterone in renal fibrosis. Adv Exp Med Biol 1165:325–346

    Article  CAS  PubMed  Google Scholar 

  22. Cui N, Hu M, Khalil RA (2017) Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 147:1–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT, Min D, Succar L, Rangan GK, Hu M, Henderson BR, Alexander SI, Harris DCH (2009) Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol 175:580–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuo Y, Liu Y (2018) New insights into the role and mechanism of Wnt/beta-catenin signalling in kidney fibrosis. Nephrology (Carlton) 23:38–43

    Article  CAS  Google Scholar 

  25. Schunk SJ, Floege J, Fliser D, Speer T (2021) WNT-β-catenin signalling — a versatile player in kidney injury and repair. Nat Rev Nephrol 17:172–184

    Article  CAS  PubMed  Google Scholar 

  26. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127:838S–841S

    Article  CAS  PubMed  Google Scholar 

  27. Moghadaszadeh B, Beggs AH (2006) Selenoproteins and their impact on human health through diverse physiological pathways. Physiology (Bethesda) 21:307–315

    CAS  Google Scholar 

  28. Iglesias P, Selgas R, Romero S, Díez JJ (2013) Selenium and kidney disease. J Nephrol 26:266–272

    Article  CAS  PubMed  Google Scholar 

  29. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    Article  PubMed  Google Scholar 

  30. de Haan JB, Stefanovic N, Nikolic-Paterson D, Scurr LL, Croft KD, Mori TA, Hertzog P, Kola I, Atkins RC, Tesch GH (2005) Kidney expression of glutathione peroxidase-1 is not protective against streptozotocin-induced diabetic nephropathy. Am J Physiol Ren Physiol 289:F544–F551

    Article  Google Scholar 

  31. Hill KE, Zhou J, McMahan WJ et al (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278:13640–13646

    Article  CAS  PubMed  Google Scholar 

  32. Schweizer U, Streckfuss F, Pelt P et al (2005) Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J 386:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reinhardt W, Dolff S, Benson S, Broecker-Preuß M, Behrendt S, Hög A, Führer D, Schomburg L, Köhrle J (2015) Chronic kidney disease distinctly affects relationship between selenoprotein P status and serum thyroid hormone parameters. Thyroid 25:1091–1096

    Article  CAS  PubMed  Google Scholar 

  34. Yuan D, Zhan XA, Wang YX (2012) Effect of selenium sources on the expression of cellular glutathione peroxidase and cytoplasmic thioredoxin reductase in the liver and kidney of broiler breeders and their offspring. Poult Sci 91:936–942

    Article  CAS  PubMed  Google Scholar 

  35. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Godoy JR, Oesteritz S, Hanschmann EM, Ockenga W, Ackermann W, Lillig CH (2011) Segment-specific overexpression of redoxins after renal ischemia and reperfusion: protective roles of glutaredoxin 2, peroxiredoxin 3, and peroxiredoxin 6. Free Radic Biol Med 51:552–561

    Article  CAS  PubMed  Google Scholar 

  37. Hill KE, McCollum GW, Boeglin ME, Burk RF (1997) Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun 234:293–295

    Article  CAS  PubMed  Google Scholar 

  38. Jha JC, Gray SP, Barit D, Okabe J, el-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F, Touyz RM, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25:1237–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho S, Yu SL, Kang J, Jeong BY, Lee HY, Park CG, Yu YB, Jin DC, Hwang WM, Yun SR, Song HS, Park MH, Yoon SH (2019) NADPH oxidase 4 mediates TGF-beta1/Smad signaling pathway induced acute kidney injury in hypoxia. PLoS One 14:e0219483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su H, Wan C, Song A et al (2019) Oxidative stress and renal fibrosis: mechanisms and therapies. Adv Exp Med Biol 1165:585–604

    Article  CAS  PubMed  Google Scholar 

  41. Gunes S, Sahinturk V, Uslu S, Ayhanci A, Kacar S, Uyar R (2018) Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biol Trace Elem Res 185:116–123

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Gong Y, Sun Y, Cai J, Liu Q, Bao J, Yang J, Zhang Z (2020) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res 194:237–243

    Article  CAS  PubMed  Google Scholar 

  43. Cao C, Luo J, Li X, Zhang M, Zhang H, Zhang J, Wang K (2018) Selenium-rich yeast protects against aluminum-induced renal inflammation and ionic disturbances. Biol Trace Elem Res 186:467–473

    Article  CAS  PubMed  Google Scholar 

  44. Migliorini A, Ebid R, Scherbaum CR, Anders HJ (2013) The danger control concept in kidney disease: mesangial cells. J Nephrol 26:437–449

    Article  CAS  PubMed  Google Scholar 

  45. Schlöndorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187

    Article  PubMed  Google Scholar 

  46. Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  47. Hijmans RS, Rasmussen DG, Yazdani S et al (2017) Urinary collagen degradation products as early markers of progressive renal fibrosis. J Transl Med 15:63

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bülow RD, Boor P (2019) Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem 67:643–661

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wright RD, Dimou P, Northey SJ, Beresford MW (2019) Mesangial cells are key contributors to the fibrotic damage seen in the lupus nephritis glomerulus. J Inflamm (Lond) 16:22

    Article  Google Scholar 

  50. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Ren Physiol 292:905–911

    Article  Google Scholar 

  51. Tan RJ, Liu Y (2012) Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Ren Physiol 302:1351–1361

    Article  Google Scholar 

  52. Phillips TM, Fadia M, Lea-Henry TN, Smiles J, Walters GD, Jiang SH (2017) MMP2 and MMP9 associate with crescentic glomerulonephritis. Clin Kidney J 10:215–220

    CAS  PubMed  Google Scholar 

  53. Yu XA, Hu Y, Zhang Y, Zhang R, Bai X, Gu L, Gao H, Li R, Tian J, Yu BY (2020) Integrating the polydopamine nanosphere/aptamers nanoplatform with a DNase-I-assisted recycling amplification strategy for simultaneous detection of MMP-9 and MMP-2 during renal interstitial fibrosis. ACS Sens 5:1119–1125

    Article  CAS  PubMed  Google Scholar 

  54. Han J, Liang H, Yi J, Tan W, He S, Wu X, Shi X, Ma J, Guo X (2016) Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats. J Trace Elem Med Biol 34:1–9

    Article  CAS  PubMed  Google Scholar 

  55. Aban CE, Lombardi A, Neiman G, Biani MC, la Greca A, Waisman A, Moro LN, Sevlever G, Miriuka S, Luzzani C (2021) Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep 11:2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl (2011) 4:84–90

    Article  CAS  Google Scholar 

  57. He X (2008) Cilia put a brake on Wnt signalling. Nat Cell Biol 10:11–13

    Article  CAS  PubMed  Google Scholar 

  58. Zhang ZH, He JQ, Zhao YY, Chen HC, Tan NH (2020) Asiatic acid prevents renal fibrosis in UUO rats via promoting the production of 15d-PGJ2, an endogenous ligand of PPAR-γ. Acta Pharmacol Sin 41:373–382

    Article  CAS  PubMed  Google Scholar 

  59. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, Liu Y (2016) Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol 27:1727–1740

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Zhou CJ, Liu Y (2018) Wnt signaling in kidney development and disease. Prog Mol Biol Transl Sci 153:181–207

    Article  CAS  PubMed  Google Scholar 

  61. Abraityte A, Vinge LE, Askevold ET, Lekva T, Michelsen AE, Ranheim T, Alfsnes K, Fiane A, Aakhus S, Lunde IG, Dahl CP, Aukrust P, Christensen G, Gullestad L, Yndestad A, Ueland T (2017) Wnt5a is elevated in heart failure and affects cardiac fibroblast function. J Mol Med (Berl) 95:767–777

    Article  CAS  Google Scholar 

  62. Rashid ST, Humphries JD, Byron A, Dhar A, Askari JA, Selley JN, Knight D, Goldin RD, Thursz M, Humphries MJ (2012) Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver. J Proteome Res 11:4052–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chien AJ, Conrad WH, Moon RT (2009) A Wnt survival guide: from flies to human disease. J Invest Dermatol 129:1614–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Igota S, Tosa M, Murakami M, Egawa S, Shimizu H, Hyakusoku H, Ghazizadeh M (2013) Identification and characterization of Wnt signaling pathway in keloid pathogenesis. Int J Med Sci 10:344–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the writing assistance provided by Dr. Chuang Nie (Department of Epidemiology, College of Public Health, Harbin Medical University) and additional editorial support from American Journal Experts.

Availability of data and materials

The data during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Funding

This work was supported financially by the Natural Science Foundation of China (No. 81472929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Ethical Approval

All procedures involving animals were in compliance with the Animal Ethics Committee of Harbin Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Tao, J., Chen, Y. et al. Selenium Deficiency Leads to Changes in Renal Fibrosis Marker Proteins and Wnt/β-Catenin Signaling Pathway Components. Biol Trace Elem Res 200, 1127–1139 (2022). https://doi.org/10.1007/s12011-021-02730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02730-1

Keywords

Navigation