Skip to main content
Log in

Green Synthesized Silver Nanoparticles-Mediated Cytotoxic Effect in Colorectal Cancer Cells: NF-κB Signal Induced Apoptosis Through Autophagy

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Green synthesized silver nanoparticles (Ag-NPs) have demonstrated promising effects, including cytotoxicity and anticancer potential, in different cell lines. Therefore, in our previous study, Ag-NPs were synthesized from the reduction of AgNO3 using Brassica rapa var. japonica (Bj) leaf extract as a reducing and stabilizing agent. The synthesized Ag-NPs were spherical in shape, with a size range of 15–30 nm. They had phase-centered cubic structure with strong growth inhibition potential against some bacteria. In continuation with our previous study, in the present study, we aimed to investigate the autophagy-regulated cytotoxic effect of Ag-NPs against human epithelial colorectal adenocarcinoma cells (Caco-2 cells). We found that the Bj leaf aqueous extract facilitated Brassica silver nanoparticles (Brassica Ag-NPs)-induced NF-κB mediated autophagy in Caco-2 cells. Results showed that Ag-NPs reduced cell viability of Caco-2 cells by inducing oxidative stress and DNA damage. Therefore, to understand the mechanism underlying the death-promoting activity of Ag-NPs in Caco-2 cells, western blotting was performed. Western blot analysis showed decreased expression of NFκB and increased expression of IκB, which is a sign of autophagy initiation. In addition, autophagosome formation was accelerated by the activity of p53 and light chain 3 (LC3) II. In addition, inhibition of Akt and mTOR also played a pivotal role in autophagy formation. Finally, excessive expansion of autophagy promoted apoptosis, which subsequently resulted in necrosis. These findings support a novel cell death-promoting function of autophagy by Ag-NPs in Caco-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ong C, Lim JZZ, Ng C-T, Li JJ, Yung L-YL, Bay B-H (2013) Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem 20(6):772–781. https://doi.org/10.2174/0929867311320060003

    Article  CAS  PubMed  Google Scholar 

  2. Kahzad N, Salehzadeh A (2020) Green synthesis of CuFe2O4@Ag nanocomposite using the Chlorella vulgaris and evaluation of its effect on the expression of norA efflux pump gene among Staphylococcus aureus strains. Biol Trace Elem Res 198:359–370. https://doi.org/10.1007/s12011-020-02055-5

    Article  CAS  PubMed  Google Scholar 

  3. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces 121:474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

    Article  CAS  PubMed  Google Scholar 

  4. Bagur H, Poojari CC, Melappa G, Rangappa R, Chandrasekhar N, Somu P (2019) Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J Clust Sci 31:1241–1255. https://doi.org/10.1007/s10876-019-01731-4

    Article  CAS  Google Scholar 

  5. Acharya D, Satapathy S, Somu P, Parida UK, Mishra G (2020) Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02304-7

  6. Somu P, Paul S (2019) Protein assisted one pot controlled synthesis of monodispersed and multifunctional colloidal silver-gold alloy nanoparticles. J Mol Liq 291:111303. https://doi.org/10.1016/j.molliq.2019.111303

    Article  CAS  Google Scholar 

  7. Moshfegh A, Jalali A, Salehzadeh A, Jozani AJ (2019) Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines. Micro Nano Lett 14(5):581–584

    Article  CAS  Google Scholar 

  8. Salehzadeh A, Naeemi S, Khaknezhad L, Moradi-Shoeili Z, Shandiz SAS (2019) Fe3O4/Ag nanocomposite biosynthesised using Spirulina platensis extract and its enhanced anticancer efficiency. IET Nanobiotechnol 13(7):766–770. https://doi.org/10.1049/iet-nbt.2018.5364

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  10. Kanmani P, Lim ST (2013) Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym 97:421–428

    Article  CAS  PubMed  Google Scholar 

  11. Akter M, Rahman MM, Ullah AKMA, Sikder MT, Hosokawa T, Saito T, Kurasaki M (2018) Brassica rapa var japonica leaf extract mediated green synthesis of silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity. J Inorg Organomet Polym Mater 28:1483–1493. https://doi.org/10.1007/s10904-018-0818-7

    Article  CAS  Google Scholar 

  12. Buttacavoli M, Albanese NN, Cara GD, Alduina R, Faleri C, Gallo M (2017) Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget 9(11):9685–9705

    Article  PubMed  PubMed Central  Google Scholar 

  13. Herrero PE, Medarde FA (2015) Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79. https://doi.org/10.1016/j.ejpb.2015.03.018

    Article  CAS  Google Scholar 

  14. Mattos SF, Villalonga P, Clardy J, Lam EWF (2008) Foxo 3a mediates the cytotoxic effects of Cisplatin in colon cancer cells. Mol Cancer Ther 7:3237–3246

    Article  PubMed Central  Google Scholar 

  15. Jeught KVD, Xu HC, Li YuJ LX-B, Ji G (2018) Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 24(34):3834–3848

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishida AE, Ohmichi M, Mabuchi S (2004) Inhibition of phosphorylation of a forkhead transcription factor sensitizes human ovarial cancer cells to cisplatin. Endocrinology 145:2014–2022

    Article  Google Scholar 

  17. Mayo MW, Baldwin AS (2000) The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta Rev Cancer 1470:55–62. https://doi.org/10.1016/S0304-419X(00)00002-0

    Article  Google Scholar 

  18. Karin M (2013) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  Google Scholar 

  19. Ghosh S, Tergaonkar V, Rothlin CV, Correa RG, Bottero V, Bist P, Verma IM, Hunter T (2006) Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival. Cancer Cell 10:215–226. https://doi.org/10.1016/j.ccr.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  20. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  21. Roy R, Singh SK, Chauhand LKS, Das M, Tripathi A, Dwivedi PD (2014) Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/ Akt/mTOR inhibition. Toxicol Lett 227:29–40

    Article  CAS  PubMed  Google Scholar 

  22. Rahman MM, Uson-Lopez R, Sikder MT, Tan G, Hosokawa T, Saito T, Kurasaki M (2018) Ameliorative effects of selenium on arenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis. Chemosphere 196:453–466. https://doi.org/10.1016/j.chemosphere

    Article  CAS  PubMed  Google Scholar 

  23. Rajawat YS, Bossis I (2008) Autophagy in aging and in neurodegenerative disorders. Neurobiol Aging 7:46–61

    Google Scholar 

  24. Zou M, Lu N, Hu CLW, Sun Y, Wang X, You Q, Gu C, Xi T, Guo Q (2012) Beclin 1- mediated autophagy in hepatocellular carcinoma cells: implication in anticancer efficiency of oroxylin A via inhibition of mTOR signaling. Cell Signal 24:1722–1732. https://doi.org/10.1016/j.cellsig.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  25. Satapathy SR, Mohapatra P, Preet R, Das D, Sarkar B, Choudhuri T, Wyatt MD, Kundu CN (2013) Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine 8:1307–1322

    Article  CAS  PubMed  Google Scholar 

  26. Criollo A, Chereau F, Malik SA, Niso-Santano M, Marino G, Galluzzi L (2012) Autophagy is required for the activation of NFkappaB. Cell Cycle 11:194–199. https://doi.org/10.4161/cc.11.1.18669

    Article  CAS  PubMed  Google Scholar 

  27. Schlottmann S, Buback F, Stahl B, Meierhenrich R, Walter P, Georgieff M (2008) Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediat Inflamm 2008:725854. https://doi.org/10.1155/2008/725854

    Article  CAS  Google Scholar 

  28. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22:181–185. https://doi.org/10.1016/j.ceb.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  29. Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 102:8204–8209. https://doi.org/10.1073/pnas.2001569117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang J, Di J, Cao H, Bai J, Zheng J (2015) p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett 363:101–107. https://doi.org/10.1016/j.canlet.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  31. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22. https://doi.org/10.1016/j.ccr.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  32. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760. https://doi.org/10.1038/sj.emboj.7601623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gimenez-Xavier P, Francisco R, Platini F, Perez R, Ambrosio S (2008) LC3-I conversion to LC3-II does not necessarily result in complete autophagy. Int J Mol Med 22:781–785. https://doi.org/10.3892/ijmm_00000085

    Article  CAS  PubMed  Google Scholar 

  34. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975. https://doi.org/10.1038/cdd.2009.33

    Article  CAS  PubMed  Google Scholar 

  35. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36(12):2491–2502. https://doi.org/10.1016/j.biocel.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  36. Salazar M, Carracedo A, Salanueva ÍJ, Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, González-Feria L, Iovanna JL, Guzmán M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant sup-plementation. Toxicology 189:41–54

    Article  CAS  PubMed  Google Scholar 

  38. Chan FK-M, Moriwaki K, Rosa MJD (2013) Detection of necrosis by release of lactate dehydrogenase (LDH) activity. Methods Mol Biol 979:65–70. https://doi.org/10.1007/978-1-62703-290-2_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beera C, Foldbjerga R, Hayashib Y, Sutherland DS, Autrupa H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208:286–292. https://doi.org/10.1016/j.toxlet.2011.11.002

    Article  CAS  Google Scholar 

  40. Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol Vitro 24:872–878. https://doi.org/10.1016/j.tiv.2009.12.001

    Article  CAS  Google Scholar 

  41. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress- dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23:1076–1084. https://doi.org/10.1016/j.tiv.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  42. Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon F (2004) NF-kappa B activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Letter 578:111–115. https://doi.org/10.1016/j.febslet.2004.10.082

    Article  CAS  Google Scholar 

  43. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H (2003) NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909. https://doi.org/10.1093/emboj/cdg379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Djavanheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382. https://doi.org/10.1074/jbc.M602097200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Miyako Komori, Prof. Kamiya, Dr. Umezawa, and Dr. Parvin Begum for providing experimental support. We would also like to express our gratitude to Nahmina Begum for her generous cooperation in the statistical analysis. We are thankful to the Riken Bioresource Center, Tsukuba Ibaraki, Japan, for the generous donation of Caco-2 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Kurasaki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, M., Atique Ullah, A.K.M., Banik, S. et al. Green Synthesized Silver Nanoparticles-Mediated Cytotoxic Effect in Colorectal Cancer Cells: NF-κB Signal Induced Apoptosis Through Autophagy. Biol Trace Elem Res 199, 3272–3286 (2021). https://doi.org/10.1007/s12011-020-02463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02463-7

Keywords

Navigation