Skip to main content
Log in

Effects of Fluorine on Intestinal Structural Integrity and Microbiota Composition of Common Carp

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluorine is an environmental toxicant and exposure of fluorine could induce various health disorders. Gut microbiota has been known to be involved in maintaining animal or human health. Therefore, in the present study, we aimed to evaluate the relationship between fluorine exposure and gut microbiota in common carp. Gut microbiota composition was detected by 16S rRNA gene sequencing. Intestinal structural integrity was assessed by hematoxylin-eosin staining and tight junction protection detection. The results showed that exposure of carp to fluorine led to the injury of intestinal tissues. And compared to the control group, the expression of tight junction protein ZO-1 and occludin was decreased. Meanwhile, the gut microbial diversity and composition were changed by fluorine exposure. At the phylum level, the abundance of Fusobacteria and Firmicutes increased significantly, and the abundance of Actinobacteria decreased markedly after treatment of fluorine. At the genus level, interestingly, we found the abundance of Plesiomonas, an important pathogenic bacteria, increased significantly by the treatment of fluorine. And the abundance of Akkermansia, a critical probiotics, was markedly inhibited by the treatment of fluorine. In conclusion, the results suggested fluorine exposure changed the gut microbiome composition and led to the damage of intestinal structural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhar V, Bhatnagar M (2009) Physiology and toxicity of fluoride. Indian J Dent Res 20(3):350–355

    Article  Google Scholar 

  2. Chu S, Letcher RJ (2017) Side-chain fluorinated polymer surfactants in aquatic sediment and biosolid-augmented agricultural soil from the Great Lakes basin of North America. Sci Total Environ 607-608:262–270

    Article  CAS  Google Scholar 

  3. Gao X, Hu Y, Li C, Dai C, Li L, Ou X, Wang Y (2016) Evaluation of fluorine release from air deposited coal spoil piles: a case study at Yangquan city, Northern China. Sci Total Environ 545-546:1–10

    Article  CAS  Google Scholar 

  4. Song GH, Huang FB, Gao JP, Liu ML, Pang WB, Li W, Yan XY, Huo MJ, Yang X (2015) Effects of fluoride on DNA damage and caspase-mediated apoptosis in the liver of rats. Biol Trace Elem Res 166(2):173–182

    Article  CAS  Google Scholar 

  5. Tian X, Feng J, Dong N, Lyu Y, Wei C, Li B, Ma Y, Xie J, Qiu Y, Song G, Ren X, Yan X (2019) Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and disrupts ultrastructure in the kidneys of rat offspring. Sci Total Environ 686:1229–1237

    Article  CAS  Google Scholar 

  6. Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606(2):135–150

    Article  CAS  Google Scholar 

  7. Butt CM, Berger U, Bossi R, Tomy GT (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408(15):2936–2965

    Article  CAS  Google Scholar 

  8. Chen J, Cao J, Luo Y, Xie L, Song J, Xue W, Jia R, Song J (2014) Expression of ERK and p-ERK proteins of ERK signaling pathway in the kidneys of fluoride-exposed carp (Cyprinus carpio). Acta Histochem 116(8):1337–1341

    Article  CAS  Google Scholar 

  9. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S (2011) Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol 85(4):327–335

    Article  CAS  Google Scholar 

  10. Gomis MI, Wang Z, Scheringer M, Cousins IT (2015) A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Sci Total Environ 505:981–991

    Article  CAS  Google Scholar 

  11. Cao J, Chen J, Wang J, Jia R, Xue W, Luo Y, Gan X (2013) Effects of fluoride on liver apoptosis and Bcl-2, Bax protein expression in freshwater teleost, Cyprinus carpio. Chemosphere 91(8):1203–1212

    Article  CAS  Google Scholar 

  12. Sommer F, Backhed F (2013) The gut microbiota--masters of host development and physiology. Nat Rev Microbiol 11(4):227–238

    Article  CAS  Google Scholar 

  13. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  Google Scholar 

  14. Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B (2014) The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res 76(1):2–10

    Article  Google Scholar 

  15. Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, Li J, Chu R, Xie D, Song H, Wu Y, Ying H, Jia X, Wang H (2017) Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 125(3):437–446

    Article  CAS  Google Scholar 

  16. Meng XL, Li S, Qin CB, Zhu ZX, Hu WP, Yang LP, Lu RH, Li WJ, Nie GX (2018) Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol Environ Saf 160:257–264

    Article  CAS  Google Scholar 

  17. Rothenberg SE, Keiser S, Ajami NJ, Wong MC, Gesell J, Petrosino JF, Johs A (2016) The role of gut microbiota in fetal methylmercury exposure: insights from a pilot study. Toxicol Lett 242:60–67

    Article  CAS  Google Scholar 

  18. Cao J, Chen J, Xie L, Wang J, Feng C, Song J (2015) Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquat Toxicol 167:180–190

    Article  CAS  Google Scholar 

  19. Cao J, Chen J, Wang J, Wu X, Li Y, Xie L (2013) Tissue distributions of fluoride and its toxicity in the gills of a freshwater teleost, Cyprinus carpio. Aquat Toxicol 130-131:68–76

    Article  CAS  Google Scholar 

  20. Claus SP, Guillou H, Ellero-Simatos S (2016) The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2:16003

    Article  Google Scholar 

  21. Salim SY, Soderholm JD (2011) Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 17(1):362–381

    Article  Google Scholar 

  22. Modina SC, Polito U, Rossi R, Corino C, Di Giancamillo A (2019) Nutritional regulation of gut barrier integrity in weaning piglets. Animals (Basel) 9(12):1045

  23. Konig J, Wells J, Cani PD, Garcia-Rodenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ (2016) Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 7(10):e196

    Article  Google Scholar 

  24. Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B (2015) Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 421:44–53

    Article  CAS  Google Scholar 

  25. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267

    Article  CAS  Google Scholar 

  26. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101(13):4596–4601

    Article  CAS  Google Scholar 

  27. Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16(5):559–564

    Article  CAS  Google Scholar 

  28. Li T, Long M, Gatesoupe FJ, Zhang Q, Li A, Gong X (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69(1):25–36

    Article  CAS  Google Scholar 

  29. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estecio MR, Issa JP (2014) Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 74(5):1311–1318

    Article  CAS  Google Scholar 

  30. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207–215

    Article  CAS  Google Scholar 

  31. Li X, Yan Q, Xie S, Hu W, Yu Y, Hu Z (2013) Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLoS One 8(5):e64577

    Article  CAS  Google Scholar 

  32. Abdallah Ismail N, Ragab SH, Abd Elbaky A, Shoeib AR, Alhosary Y, Fekry D (2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci 7(3):501–507

    Article  Google Scholar 

  33. Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH (2017) Antibacterial, anticancer and neuroprotective activities of rare actinobacteria from mangrove forest soils. Indian J Microbiol 57(2):177–187

    Article  Google Scholar 

  34. Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  Google Scholar 

  35. Van Damme LR, Vandepitte J (1984) Isolation of Edwardsiella tarda and Plesiomonas shigelloides from mammals and birds in Zaire. Rev Elev Med Vet Pays Trop 37(2):145–151

    PubMed  Google Scholar 

  36. Sack DA, Chowdhury KA, Huq A, Kay BA, Sayeed S (1988) Epidemiology of Aeromonas and Plesiomonas diarrhoea. J Diarrhoeal Dis Res 6(2):107–112

    CAS  PubMed  Google Scholar 

  37. Dingemanse C, Belzer C, van Hijum SA, Gunthel M, Salvatori D, den Dunnen JT, Kuijper EJ, Devilee P, de Vos WM, van Ommen GB, Robanus-Maandag EC (2015) Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 36(11):1388–1396

    Article  CAS  Google Scholar 

  38. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Consortium MI-O, Dumas ME, Rizkalla SW, Dore J, Cani PD, Clement K (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426–436

    Article  CAS  Google Scholar 

  39. Zhang Z, Wu X, Cao S, Cromie M, Shen Y, Feng Y, Yang H, Li L (2017) Chlorogenic acid ameliorates experimental colitis by promoting growth of Akkermansia in mice. Nutrients 9(7):677

  40. Ottman N, Reunanen J, Meijerink M, Pietila TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S, Satokari R, Mercenier A, Palva A, Smidt H, de Vos WM, Belzer C (2017) Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 12(3):e0173004

    Article  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (no. 30972191), Jilin Province Industrial Technology Research and Development Special Project (no. 2019C059-5), and Jilin Province Science and Technology Development Plan Project (no. 20190201179JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhe Fu or Yuehong Li.

Ethics declarations

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the journal.

The experiments were according to the Chinese regulation for Experimental Animals and approved by the Institutional Animal Care and Use Committee of Jilin Agricultural University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Zhang, Y., Zhang, P. et al. Effects of Fluorine on Intestinal Structural Integrity and Microbiota Composition of Common Carp. Biol Trace Elem Res 199, 3489–3496 (2021). https://doi.org/10.1007/s12011-020-02456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02456-6

Keywords

Navigation