Skip to main content
Log in

The Potential Role of Zinc Oxide Nanoparticles in MicroRNAs Dysregulation in STZ-Induced Type 2 Diabetes in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a group of metabolic disorders that are characterized by a loss of glucose homeostasis and insufficiency in production or action of insulin. Development of newly antidiabetic molecules using a variety of organic compounds and biomolecules has been in practice for a long time. Recently, nanomaterials are also being used in antidiabetic studies for their unique properties. In this context, zinc nanoparticles have drawn attention due to the relationship between diabetes and imbalance of zinc homeostasis. Few studies have attempted to investigate the effect of zinc oxide nanoparticles (ZON) in microRNA dysregulations in diabetes. To evaluate the therapeutic effect of ZON on streptozotocin (STZ)-induced diabetic rats as well as its role in microRNA dysregulations. Diabetes was induced in rats by 60 mg/kg body weight (bwt) of STZ and then treated with ZON (5 mg/kg bwt) for 15 consecutive days. The levels of glucose, insulin, oxidative stress markers, and microRNAs expression were measured in liver and pancreas tissues. Intraperitoneal injection of 60 mg/kg bwt of STZ to Wistar rats caused significant decreases in the body weight and Zn contents of pancreas, liver, and kidney. Also, STZ injection increased the blood glucose level and oxidative stress (lipid peroxidation (LPO) and nitric oxide (NO). Meanwhile, STZ decreased blood insulin and pancreatic anti-oxidants. STZ also resulted in β cell dysfunction and destruction and altered the expression of certain pancreatic and liver microRNAs. ZON treatment for 15 days, at a dose of 5 mg/kg bwt resulted in marked improvements in the blood insulin, glucose tolerance, and structure and function of the pancreatic β cells. Furthermore, ZON administration reduced LPO and NO, and increased the levels of enzymatic and non-enzymatic anti-oxidants in STZ-induced diabetic rats. It was found also that ZON specifically regulated the expression of pancreatic and liver microRNAs that involved in diabetes development. The obtained results revealed that ZON is a promising antidiabetic agent. The antidiabetic effect of ZON was partially mediated by restoring the oxidants/antioxidants balance and by modulating the alerted microRNAs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Quraishy S, Dkhil MA, Abdel Moneim AE (2015) Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine 10:6741–6756

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi R, Constantine G, Katulanda P (2012) Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 4(1):13. https://doi.org/10.1186/1758-5996-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mao Y, Mohan R, Zhang S, Tang X (2013) MicroRNAs as pharmacological targets in diabetes. Pharmacol Res 75:37–47. https://doi.org/10.1016/j.phrs.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng J, Xing W, Xie L (2016) Regulatory roles of microRNAs in diabetes. Int J Mol Sci 17(10). https://doi.org/10.3390/ijms17101729

  5. Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR (2015) Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru 23:44. https://doi.org/10.1186/s40199-015-0127-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Umrani RD, Paknikar KM (2014) Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats. Nanomedicine (Lond) 9(1):89–104. https://doi.org/10.2217/nnm.12.205

    Article  CAS  Google Scholar 

  7. Nazarizadeh A, Asri-Rezaie S (2016) Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. AAPS PharmSciTech 17(4):834–843. https://doi.org/10.1208/s12249-015-0405-y

    Article  CAS  PubMed  Google Scholar 

  8. Aboonabi A, Rahmat A, Othman F (2014) Antioxidant effect of pomegranate against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Toxicol Rep 1:915–922. https://doi.org/10.1016/j.toxrep.2014.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thompson M, Ellison SL, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report). Pure Appl Chem 74(5):835–855

    CAS  Google Scholar 

  10. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6(1):24–27. https://doi.org/10.1177/000456326900600108

    Article  CAS  Google Scholar 

  11. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    CAS  PubMed  Google Scholar 

  12. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  CAS  PubMed  Google Scholar 

  13. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  PubMed  Google Scholar 

  14. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    CAS  PubMed  Google Scholar 

  15. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  16. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  17. Factor VM, Kiss A, Woitach JT, Wirth PJ, Thorgeirsson SS (1998) Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273(25):15846–15853

    CAS  PubMed  Google Scholar 

  18. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    CAS  PubMed  Google Scholar 

  19. Belfield A, Goldberg DM (1971) Normal ranges and diagnostic value of serum 5'nucleotidase and alkaline phosphatase activities in infancy. Arch Dis Child 46(250):842–846

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wybenga DR, Di Giorgio J, Pileggi VJ (1971) Manual and automated methods for urea nitrogen measurement in whole serum. Clin Chem 17(9):891–895

    CAS  PubMed  Google Scholar 

  21. Chromy V, Rozkosna K, Sedlak P (2008) Determination of serum creatinine by Jaffe method and how to calibrate to eliminate matrix interference problems. Clin Chem Lab Med 46(8):1127–1133. https://doi.org/10.1515/CCLM.2008.224

    Article  CAS  PubMed  Google Scholar 

  22. Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, Scholven J, Einspanier R (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol 9:34. https://doi.org/10.1186/1471-2199-9-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rutter GA, Chabosseau P, Bellomo EA, Maret W, Mitchell RK, Hodson DJ, Solomou A, Hu M (2016) Intracellular zinc in insulin secretion and action: a determinant of diabetes risk. Proc Nutr Soc 75(1):61–72. https://doi.org/10.1017/s0029665115003237

    Article  CAS  PubMed  Google Scholar 

  24. Amiri A, Dehkordi RAF, Heidarnejad MS, Dehkordi MJ (2018) Effect of the zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: a stereological and biochemical study. Biol Trace Elem Res 181(2):258–264. https://doi.org/10.1007/s12011-017-1035-x

    Article  CAS  PubMed  Google Scholar 

  25. Asani SC, Umrani RD, Paknikar KM (2016) In vitro studies on the pleotropic antidiabetic effects of zinc oxide nanoparticles. Nanomedicine (Lond) 11(13):1671–1687. https://doi.org/10.2217/nnm-2016-0119

    Article  CAS  Google Scholar 

  26. Changrani NR, Chonkar A, Adeghate E, Singh J (2006) Effects of streptozotocin-induced type 1 diabetes mellitus on total protein concentrations and cation contents in the isolated pancreas, parotid, submandibular, and lacrimal glands of rats. Ann N Y Acad Sci 1084:503–519

    CAS  PubMed  Google Scholar 

  27. Barman S, Pradeep SR, Srinivasan K (2017) Zinc supplementation mitigates its dyshomeostasis in experimental diabetic rats by regulating the expression of zinc transporters and metallothionein. Metallomics 9(12):1765–1777. https://doi.org/10.1039/c7mt00210f

    Article  CAS  PubMed  Google Scholar 

  28. Cordova A (1994) Zinc content in selected tissues in streptozotocin-diabetic rats after maximal exercise. Biol Trace Elem Res 42(3):209–216. https://doi.org/10.1007/bf02911518

    Article  CAS  PubMed  Google Scholar 

  29. Park JS, Xun P, Li J, Morris SJ, Jacobs DR, Liu K, He K (2016) Longitudinal association between toenail zinc levels and the incidence of diabetes among American young adults: the CARDIA trace element study. Sci Rep 6:23155

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shoae-Hagh P, Rahimifard M, Navaei-Nigjeh M, Baeeri M, Gholami M, Mohammadirad A, Abdollahi M (2014) Zinc oxide nanoparticles reduce apoptosis and oxidative stress values in isolated rat pancreatic islets. Biol Trace Elem Res 162(1–3):262–269. https://doi.org/10.1007/s12011-014-0113-6

    Article  CAS  PubMed  Google Scholar 

  31. Schweiger M, Steffl M, Amselgruber WM (2013) The zinc transporter ZnT8 (slc30A8) is expressed exclusively in beta cells in porcine islets. Histochem Cell Biol 140(6):677–684. https://doi.org/10.1007/s00418-013-1137-2

    Article  CAS  PubMed  Google Scholar 

  32. Gerber PA, Rutter GA (2017) The role of oxidative stress and hypoxia in pancreatic Beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 26(10):501–518. https://doi.org/10.1089/ars.2016.6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmed HH, Abd El-Maksoud MD, Abdel Moneim AE, Aglan HA (2017) Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol Trace Elem Res 177(2):267–280. https://doi.org/10.1007/s12011-016-0876-z

    Article  CAS  PubMed  Google Scholar 

  34. Saddick S, Afifi M, Abu Zinada OA (2017) Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 24(7):1672–1678. https://doi.org/10.1016/j.sjbs.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  35. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5–6):353–357. https://doi.org/10.2119/2008-00033.Prasad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uyoyo Ukperoro J, Offiah N, Idris T, Awogoke D (2010) Antioxidant effect of zinc, selenium and their combination on the liver and kidney of alloxan-induced diabetes in rats. Mediterr J Nutr Metab 3(1):25–30. https://doi.org/10.1007/s12349-009-0069-9

    Article  Google Scholar 

  37. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. Antioxidants (Basel) 6(2). https://doi.org/10.3390/antiox6020024

  38. Zhu Y, You W, Wang H, Li Y, Qiao N, Shi Y, Zhang C, Bleich D, Han X (2013) MicroRNA-24/MODY gene regulatory pathway mediates pancreatic beta-cell dysfunction. Diabetes 62(9):3194–3206. https://doi.org/10.2337/db13-0151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58(5):900–911. https://doi.org/10.1007/s00125-015-3510-2

    Article  CAS  PubMed  Google Scholar 

  40. Klein D, Misawa R, Bravo-Egana V, Vargas N, Rosero S, Piroso J, Ichii H, Umland O, Zhijie J, Tsinoremas N, Ricordi C, Inverardi L, Dominguez-Bendala J, Pastori RL (2013) MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One 8(1):e55064. https://doi.org/10.1371/journal.pone.0055064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khamisipour G, Mansourabadi E, Naeimi B, Moazzeni A, Tahmasebi R, Hasanpour M, Mohammadi MM, Mansourabadi Z, Shamsian S (2018) Knockdown of microRNA-29a regulates the expression of apoptosis-related genes in MCF-7 breast carcinoma cells. Mol Clin Oncol 8(2):362–369. https://doi.org/10.3892/mco.2017.1528

    Article  CAS  PubMed  Google Scholar 

  42. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986. https://doi.org/10.2337/db09-0881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, Cao X, Li Y (2014) Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res 2014:258695. https://doi.org/10.1155/2014/258695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–5818. https://doi.org/10.1073/pnas.0810550106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Song I, Roels S, Martens GA, Bouwens L (2017) Circulating microRNA-375 as biomarker of pancreatic beta cell death and protection of beta cell mass by cytoprotective compounds. PLoS One 12(10):e0186480. https://doi.org/10.1371/journal.pone.0186480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miao C, Zhang G, Xie Z, Chang J (2017) MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol 96(2):103–112. https://doi.org/10.1139/cjpp-2017-0452

    Article  CAS  PubMed  Google Scholar 

  47. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653. https://doi.org/10.1038/nature10112

    Article  CAS  PubMed  Google Scholar 

  48. Willeit P, Skroblin P, Moschen AR, Yin X, Kaudewitz D, Zampetaki A, Barwari T, Whitehead M, Ramirez CM, Goedeke L, Rotllan N, Bonora E, Hughes AD, Santer P, Fernandez-Hernando C, Tilg H, Willeit J, Kiechl S, Mayr M (2017) Circulating MicroRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes 66(2):347–357. https://doi.org/10.2337/db16-0731

    Article  CAS  PubMed  Google Scholar 

  49. Lu B, Christensen IT, Ma LW, Wang XL, Jiang LF, Wang CX, Feng L, Zhang JS, Yan QC (2018) miR-24-p53 pathway evoked by oxidative stress promotes lens epithelial cell apoptosis in age-related cataracts. Mol Med Rep 17(4):5021–5028. https://doi.org/10.3892/mmr.2018.8492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohtsubo K, Chen MZ, Olefsky JM, Marth JD (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat Med 17(9):1067–1075. https://doi.org/10.1038/nm.2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu CM, Liang D, Jin J, Li DJ, Zhang YC, Gao ZY, He YT (2017) Research progress on the relationship between zinc deficiency, related microRNAs, and esophageal carcinoma. Thorac Cancer 8(6):549–557. https://doi.org/10.1111/1759-7714.12493

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao Y, Li L, Min LJ, Zhu LQ, Sun QY, Zhang HF, Liu XQ, Zhang WD, Ge W, Wang JJ, Liu JC, Hao ZH (2016) Regulation of MicroRNAs, and the correlations of MicroRNAs and their targeted genes by zinc oxide nanoparticles in ovarian granulosa cells. PLoS One 11(5):e0155865. https://doi.org/10.1371/journal.pone.0155865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ryu M-S, Langkamp-Henken B, Chang S-M, Shankar MN, Cousins RJ (2011) Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis. Proc Natl Acad Sci 108(52):20970–20975. https://doi.org/10.1073/pnas.1117207108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors of the work shared equally in the work.

Corresponding author

Correspondence to Ahmed E. Abdel Moneim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, M.S., Hafez, M.M. & Abdel Moneim, A.E. The Potential Role of Zinc Oxide Nanoparticles in MicroRNAs Dysregulation in STZ-Induced Type 2 Diabetes in Rats. Biol Trace Elem Res 197, 606–618 (2020). https://doi.org/10.1007/s12011-019-02012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-02012-x

Keywords

Navigation