Skip to main content
Log in

The Adverse Effects of Se Toxicity on Inflammatory and Immune Responses in Chicken Spleens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential trace element, but excessive intake of Se could induce Se poisoning, and result in various health problems. NF-κB regulated many molecules of the immune response and the inflammatory response, and Th1/Th2 balance played a key in the regulation of immune response. The aim of this study is to investigate the role of NF-κB pathway and Th1/Th2 imbalance in the adverse influence of Se poisoning on chicken spleens. In the current study, 90 chickens were randomly divided into two groups (n = 45 per group). The chickens were maintained either on a basal diet (the control group) containing 0.2 mg/kg Se or a high supplemented diet (the Se group) containing 15 mg/kg Se for 45 days. Then, we observed the pathohistology of spleen cells and detected NO content, iNOS activity, and the expression of NF-κB, iNOS, COX-2, PTGE, IL-6, TNF-α, Foxp3, IL-4, and IFN-γ in chicken spleens. In chicken spleens of the Se group, the result showed typical characteristics of inflammation: the content of NO and the activity of iNOS were increased, and the expression of NF-κB, iNOS, COX-2, PTGE, IL-6, TNF-α, and IL-4 was enhanced and that of Foxp3 and IFN-γ was decreased. Our study showed that Se toxicity could promote inflammation via NF-κB pathway, impairing the immune function, and changing Th1/Th2 balance in the chicken spleens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xi J, Zhe X, Xia Z, Chen M, Xu S (2017) The antagonistic effect of selenium on Pb-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266

    Article  Google Scholar 

  2. Yao H, Fan R, Zhao X, Zhao W, Liu W, Yang J, Sattar H, Zhao J, Zhang Z, Xu S (2011) Selenoprotein W redox-regulated Ca2+ channels correlate with selenium deficiency-induced muscles Ca2+ leak. Oncotarget 7:57618

    Google Scholar 

  3. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830:3112–3120

    Article  CAS  PubMed  Google Scholar 

  4. Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr 143(5):613–619. https://doi.org/10.3945/jn.112.172395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin H-b, Zhu J-m, Liang L, Wang M-s, Su H (2013) The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas. China, Environ Int 52:66–74. https://doi.org/10.1016/j.envint.2012.12.003

    Article  CAS  Google Scholar 

  6. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241. https://doi.org/10.1016/S0140-6736(00)02490-9

    Article  CAS  PubMed  Google Scholar 

  7. Arthur KBJ (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  PubMed  Google Scholar 

  8. Gad MA, Abd El-Twab SM (2009) Selenium toxicosis assessment (in vivo and in vitro) and the protective role of vitamin B12 in male quail (Coturnix Coturnix). Environ Toxicol Pharmacol 27(1):7–16. https://doi.org/10.1016/j.etap.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Spallholz JE, Palace VP, Reid TW (2004) Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids. Biochem Pharmacol 67(3):547–554. https://doi.org/10.1016/j.bcp.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  10. Abul-Hassan KS, Lehnert BE, Guant L, Walmsley R (2004) Abnormal DNA repair in selenium-treated human cells. Mutat Res/Genet Toxicol Environ Mutagen 565(1):45–51. https://doi.org/10.1016/j.mrgentox.2004.09.004

    Article  CAS  Google Scholar 

  11. Rengarajan J, Szabo SJ, Glimcher LH (2000) Transcriptional regulation of Th1/Th2 polarization. Immunol Today 21(10):479–483. https://doi.org/10.1016/S0167-5699(00)01712-6

    Article  CAS  PubMed  Google Scholar 

  12. Liu F, Wang X-Y, Zhou X-P, Liu Z-P, Song X-B, Wang Z-Y, Wang L (2017) Cd disrupts autophagic flux by inhibiting cytosolic Ca2+−dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 383:13–23. https://doi.org/10.1016/j.tox.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Zhao P, Guo G, Hu Z, Tian L, Zhang K, Zhang W, Xing M (2015) The role of oxidative stress in gastrointestinal tract tissues induced by arsenic toxicity in cocks. Biol Trace Elem Res 168(2):490–499. https://doi.org/10.1007/s12011-015-0357-9

    Article  CAS  PubMed  Google Scholar 

  14. Giacconi R, Costarelli L, Malavolta M, Cardelli M, Galeazzi R, Piacenza F, Gasparini N, Basso A, Mariani E, Fulop T (2015) Effect of ZIP2 Gln/Arg/Leu (rs2234632) polymorphism on zinc homeostasis and inflammatory response following zinc supplementation. Biofactors 41(6):414–423. https://doi.org/10.1002/biof.1247

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Li S, Teng X (2016) The antagonistic effect of selenium on Pb-induced inflammatory factors and heat shock proteins mRNA expression in chicken livers. Biol Trace Elem Res 171(2):437–444. https://doi.org/10.1007/s12011-015-0532-z

    Article  CAS  PubMed  Google Scholar 

  16. Krocova Z, Macela A, Kroca M, Hernychova L (2000) The immunomodulatory effect(s) of Pb and Cd on the cells of immune system in vitro. Toxicol in Vitro 14(1):33–40. https://doi.org/10.1016/S0887-2333(99)00089-2

    Article  CAS  PubMed  Google Scholar 

  17. Ninkov M, Popov Aleksandrov A, Demenesku J, Mirkov I, Mileusnic D, Petrovic A, Grigorov I, Zolotarevski L, Tolinacki M, Kataranovski D, Brceski I, Kataranovski M (2015) Toxicity of oral Cd intake: impact on gut immunity. Toxicol Lett 237(2):89–99. https://doi.org/10.1016/j.toxlet.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Barrett CW, Singh K, Motley AK, Lintel MK, Matafonova E, Bradley AM, Ning W, Poindexter SV, Parang B, Reddy VK, Chaturvedi R, Fingleton BM, Washington MK, Wilson KT, Davies SS, Hill KE, Burk RF, Williams CS (2013) Dietary selenium deficiency exacerbates DSS-induced epithelial injury and AOM/DSS-induced tumorigenesis. PLoS One 8(7):e67845. https://doi.org/10.1371/journal.pone.0067845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Xing M, Chen M, Zhao J, Fan R, Zhao X, Cao C, Yang J, Zhang Z, Xu S (2017) Effects of selenium-Pb interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotoxicol Environ Saf 139:447–453. https://doi.org/10.1016/j.ecoenv.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  20. Yu D, Zhang Z, Yao H, Li S, Xu S-W (2015) The role of selenoprotein W in inflammatory injury in chicken immune tissues and cultured splenic lymphocyte. Biometals 28(1):75–87. https://doi.org/10.1007/s10534-014-9804-x

    Article  CAS  PubMed  Google Scholar 

  21. Khoso PA, Yang Z, Liu C, Li S (2015) Selenium deficiency downregulates selenoproteins and suppresses immune function in chicken thymus. Biol Trace Elem Res 167(1):48–55. https://doi.org/10.1007/s12011-015-0282-y

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Wang K, Huang H, Gu X, Teng X (2017) Alleviative effect of selenium on inflammatory damage caused by Pb via inhibiting inflammatory factors and heat shock proteins in chicken testes. Environ Sci Pollut Res 24(15):13405–13413. https://doi.org/10.1007/s11356-017-8785-z

    Article  CAS  Google Scholar 

  23. Yao H, Zhao W, Zhao X, Fan R, Khoso PA, Zhang Z, Liu W, Xu S (2014) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biol Trace Elem Res 161(3):318–327. https://doi.org/10.1007/s12011-014-0125-2

    Article  CAS  PubMed  Google Scholar 

  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mcadam E, Haboubi HN, Forrester G, Eltahir Z, Spencer-Harty S, Davies C, Griffiths AP, Baxter JN, Jenkins GJ (2012) Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) are important mediators of reflux-induced cell signalling in esophageal cells. Carcinogenesis 33(11):2035–2043. https://doi.org/10.1093/carcin/bgs241

    Article  CAS  PubMed  Google Scholar 

  26. Charalambous MP, Lightfoot T, Speirs V, Horgan K, Gooderham NJ (2009) Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue. Br J Cancer 101(1):106–115. https://doi.org/10.1038/sj.bjc.6605120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caamaño J, Hunter CA (2002) NF-κB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 15(3):414–429. https://doi.org/10.1128/CMR.15.3.414-429.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y-C, Hu Y-W, Sha Y-H, Gao J-J, Ma X, Li S-F, Zhao J-Y, Qiu Y-R, Lu J-B, Huang C, Zhao J-J, Zheng L, Wang Q (2015) Ox-LDL upregulates IL-6 expression by enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages. Inflammation 38(6):2116–2123. https://doi.org/10.1007/s10753-015-0194-1

    Article  CAS  PubMed  Google Scholar 

  29. Chen C-C, Sun Y-T, Chen J-J, Chiu K-T (2000) TNF-α-induced cyclooxygenase-2 expression in human lung epithelial cells: involvement of the phospholipase C-γ2, protein kinase C-α, tyrosine kinase, NF-κB-inducing kinase, and I-κB kinase 1/2 pathway. J Immunol 165(5):2719–2728. https://doi.org/10.4049/jimmunol.165.5.2719

    Article  CAS  PubMed  Google Scholar 

  30. Du Y, Zhu Y, Teng X, Zhang K, Teng X, Li S (2015) Toxicological effect of manganese on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. Biol Trace Elem Res 168(1):227–234. https://doi.org/10.1007/s12011-015-0340-5

    Article  CAS  PubMed  Google Scholar 

  31. Phuagkhaopong S, Ospondpant D, Kasemsuk T, Sibmooh N, Soodvilai S, Power C, Vivithanaporn P (2017) Cd-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology 60:82–91. https://doi.org/10.1016/j.neuro.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  32. Yang T, Cao C, Yang J, Liu T, Lei XG, Zhang Z, Xu S (2017) miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11. Redox Biol 15:159–169. https://doi.org/10.1016/j.redox.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  33. Sheng P-f, Jiang Y, Zhang Z-w, Zhang J-l, Li S, Zhang Z-q, Xu S-w (2014) The effect of Se-deficient diet on gene expression of inflammatory cytokines in chicken brain. Biometals 27(1):33–43. https://doi.org/10.1007/s10534-013-9682-7

    Article  CAS  PubMed  Google Scholar 

  34. Bretscher PA (2014) On the mechanism determining the Th1/Th2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand J Immunol 79(6):361–376. https://doi.org/10.1111/sji.12175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iavicoli I, Marinaccio A, Castellino N, Carelli G (2004) Altered cytokine production in mice exposed to Pb acetate. Int J Immunopathol Pharmacol 17(2_suppl):97–102. https://doi.org/10.1177/03946320040170S216

    Article  CAS  PubMed  Google Scholar 

  36. Cho Y, Ahn KH, Back MJ, Choi JM, Ji JE, Won JH, Fu Z, Jang JM, Kim DK (2012) Age-related effects of sodium arsenite on splenocyte proliferation and Th1/Th2 cytokine production. Arch Pharm Res 35(2):375–382. https://doi.org/10.1007/s12272-012-0219-3

    Article  CAS  PubMed  Google Scholar 

  37. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L, Chen X, Wan B (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 19(3):322–328. https://doi.org/10.1038/nm.3085

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Elsevier English Language Editing System to correct grammatical, spelling, and other common errors.

Funding

The present work was financially supported by Southwest University of Science and Technology (15zx7121) and National Defense Basic Research Project (16zg6101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegang Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Yachao Wang, Li Jiang and Jian He should be considered as co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, L., He, J. et al. The Adverse Effects of Se Toxicity on Inflammatory and Immune Responses in Chicken Spleens. Biol Trace Elem Res 185, 170–176 (2018). https://doi.org/10.1007/s12011-017-1224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1224-7

Keywords

Navigation