Skip to main content
Log in

Roles of Copper in Hepatocarcinogenesis via the Activation of Hypoxia-Inducible Factor-1α

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1α (HIF-1α) is involved in the pathogenesis of hepatocellular carcinoma (HCC). However, the roles of trace elements in the activation of HIF-1α during hepatocarcinogenesis have been unclear. We investigated whether copper (Cu) and zinc (Zn) participated in the activation of HIF-1α in the process of hepatocarcinogenesis or not. Nine patients with chronic hepatitis (CH), five with liver cirrhosis (LC), 12 with HCC, and nine normal healthy controls were enrolled in this study. Their serum HIF-1α, Cu, and Zn levels were determined in the enrolled patients. Hepatic HIF-1α expression was evaluated, using an immunohistochemical procedure. The HCC patients had significantly higher serum HIF-1α levels than the CH patients (6.47 ± 1.57 vs. 5.09 ± 1.22 ng/ml, p = 0.0344). The serum Cu level in the HCC patients was also significantly higher than those in the CH and LC patients (137 ± 24 vs. 107 ± 15 μg/dl, 114 ± 24 μg/dl). Interestingly, a positive correlation was observed between serum HIF-1α and Cu levels in the enrolled patients (r = 0.425, p = 0.0137). In contrast, no significant differences in serum Zn levels were present between the HCC patients and the CH or LC patients. The serum HIF-1α was not positively correlated with the serum Zn level in the enrolled patients, either. Immunohistochemical analysis revealed that two of the five HCC patients had HIF-1α expression in the tumor tissues, whereas none of CH and LC had hepatic HIF-1α expression in the liver tissues. These data suggest that the activation of HIF-1α derived from a Cu accumulation in the liver may cause hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Biol 15:551–578

    Article  CAS  Google Scholar 

  2. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dimova EY, Kietzmann T (2010) Hypoxia-inducible factors: post-translocational crosstalk of signaling pathways. Methods Mol Biol 647:215–236

    Article  CAS  PubMed  Google Scholar 

  4. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  CAS  PubMed  Google Scholar 

  5. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, et al. (2000) Modulation of hypoxia-inducible factor-1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    CAS  PubMed  Google Scholar 

  6. Box AH, Demetrick DJ (2004) Cell cycle kinase inhibitor expression and hypoxia-induced cell cycle arrest in human cancer cell lines. Carcinogenesis 25:2325–2335

    Article  CAS  PubMed  Google Scholar 

  7. Piret JP, Minet E, Cosse JP, Ninane N, Debacq C, Raes M, Michiels C (2005) Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem 280:9336–9344

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka H, Yamamoto M, Hashimoto N, Miyakoshi M, Tamakawa S, et al. (2006) Hypoxia-independent overexpression of hypoxia-inducible factor 1α as an early change in mouse hepatocarcinogenesis. Cancer Res 66:11263–11270

    Article  CAS  PubMed  Google Scholar 

  9. Huang GW, Yang LY, Lu WQ (2005) Expression of hypoxia-inducible factor 1α and vascular endothelial growth factor in hepatocellular carcinoma: impact on neovascularization and survival. World J Gastroenterol 11:1705–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao DF, Jiang H, Yao M, Li YM, Gu WJ, et al. (2009) Quantitative analysis of hepatic hypoxia-inducible factor-1a and its abnormal gene expression during the formation of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 8:407–413

    CAS  PubMed  Google Scholar 

  11. Dai CX, Gao Q, Qiu SJ, Ju MJ, Cai MY, et al. (2009) Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer 9:418. doi:10.1186/1471-2407-9-418

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gurusamy K (2007) Trace element concentration in primary liver cancers-a systemic review. Biol Trace Elem Res 118:191–206

    Article  CAS  PubMed  Google Scholar 

  13. Asare GA, Mossanda KS, Kew MC, Paterson AC, Kahler-Venter CP, Siziba K (2005) Hepatocellular carcinoma caused by iron overload: a possible mechanism of direct hepatocarcinogenicity. Toxicology 219:41–52

    Article  PubMed  Google Scholar 

  14. Ebara M, Fukuda H, Hatano R, Yoshikawa M, Sugiura N, et al. (2003) Metal contents in the liver of patients with chronic liver disease caused by hepatitis C virus. Oncology 65:323–330

    Article  CAS  PubMed  Google Scholar 

  15. Maeda T, Shimada M, Harimoto N, Tsujita E, Maehara S, et al. (2005) Role of tissue trace elements in liver cancers and non-cancerous liver parenchyma. Hepato-Gastroenterology 52:187–190

    CAS  PubMed  Google Scholar 

  16. Okuno T, Shimamura Y, Mizuno M, Miyata S, Miyake T, et al. (1988) Trace elements in hepatoma tissues. Trace Elem Med 5:130–136

    Google Scholar 

  17. Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, et al. (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619

    Article  CAS  PubMed  Google Scholar 

  18. Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, et al. (2010) Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One 5:e15048. doi:10.1371/journal.pone.0015048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lifschits MD, Henkin RI (1971) Circadian variation in copper and zinc in man. J Appl Physiol 31:88–92

    Google Scholar 

  20. Ichida F, Tsuji T, Omata M, Ichida T, Inoue K, et al. (1996) New Inuyama classification: new criteria for histological assessment of chronic hepatitis. Int Hepatol Commun 6:112–119

    Article  Google Scholar 

  21. Li S, Yao D, Wang L, Wu W, Qiu L, et al. (2011) Expression characteristics of hypoxia-inducible factor-1a and its clinical values in diagnosis and prognosis of hepatocellular carcinoma. Hepat Mon 11:821–828

    PubMed  PubMed Central  Google Scholar 

  22. Liang B, Zheng CS, Feng GS, Wu HP, Wang Y, et al. (2010) Correlation of hypoxia-inducible factor-1alpha with angiogenesis in liver tumors after transcatheter arterial embolization in an animal model. Cardiovasc Intervent Radiol 33:806–812

    Article  PubMed  Google Scholar 

  23. Miatto O, Casaril M, Gabrielli GB, Nicoli N, Bellisola G, et al. (1985) Diagnostic and prognostic value of serum copper and plasma fibrinogen in hepatic carcinoma. Cancer 55:774–778

    Article  CAS  PubMed  Google Scholar 

  24. Hatano R, Ebara M, Fukuda H, Yoshikawa M, Sugiura N, et al. (2000) Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. J Gastroenterol Hepatol 15:786–791

    Article  CAS  PubMed  Google Scholar 

  25. Ebara M, Fukuda H, Hatano R, Saisho H, Nagato N, et al. (2000) Relationship between copper, zinc and metallothionein in hepatocellular carcinoma and its surrounding liver parenchyma. J Hepatol 32:415–422

    Article  Google Scholar 

  26. Sugawara N, Sugawara C, Sato M, Takahashi H, Mori M (1992) Excessive accumulation of hepatic copper in LEC rats aged 80 days without hepatitis and 130 days with hepatitis. Pharmacol Toxicol 71:321–324

    Article  CAS  PubMed  Google Scholar 

  27. Himoto T, Yoneyama H, Deguchi A, Kurokohchi K, Inukai M, et al. (2010) Insulin resistance derived from zinc deficiency in non-diabetic patients with chronic hepatitis C. Exp Ther Med 1:707–711

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pramoolsinsap C, Promvant N, Komindr S, Lerdverasirikul P, Srianujata S (1994) Serum trace metals in chronic viral hepatitis and hepatocellular carcinoma in Thailand. J Gastroenterol 29:610–615

    Article  CAS  PubMed  Google Scholar 

  29. Poo JL, Rosas-Romero R, Montemayor AC, Isoard F, Uribe M (2003) Diagnostic value of copper/zinc ratio in hepatocellular carcinoma: a case control study. J Gastroenterol 38:45–51

    Article  PubMed  Google Scholar 

  30. Xie H, Kang YJ (2009) Role of copper in angiogenesis and its medical implications. Curr Med Chem 16:1304–1314

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto A, Hanayama R, Nakamura M, Suzuki K, Fujii J, Tatsumi H, Taniguchi N (1998) A high expression of heme oxygenase-1 in the liver of LEC rats at the stage of hepatoma: the possible implication of induction in uninvolved tissue. Free Radic Res 28:383–391

    Article  CAS  PubMed  Google Scholar 

  32. Feng W, Ye F, Xue W, Zhou Z, Kang J (2009) Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol 75:174–182

    Article  CAS  PubMed  Google Scholar 

  33. Kim I, Kim CH, Seo GH, Kim HS, Lee J, Kim DG, Ahn YS (2008) Inhibitory effect of hypoxic HIF-1 activation in astrocytes. Neuroreport 19:1063–1066

    Article  CAS  PubMed  Google Scholar 

  34. Wada H, Nagano H, Yamamoto H, Yang Y, Kondo M, et al. (2006) Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor 1α. Liver Int 26:414–423

    Article  CAS  PubMed  Google Scholar 

  35. Nath B, Szabo G (2012) Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology 55:622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Osaki S, Da J, Frieden E (1966) The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 241:2746–2751

    CAS  PubMed  Google Scholar 

  37. Miles SL, Fischer AP, Joshi SJ, Niles RM (2015) Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells. BMC Cancer. doi:10.1186/s12885-015-1878-5

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Himoto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himoto, T., Fujita, K., Nomura, T. et al. Roles of Copper in Hepatocarcinogenesis via the Activation of Hypoxia-Inducible Factor-1α. Biol Trace Elem Res 174, 58–64 (2016). https://doi.org/10.1007/s12011-016-0702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0702-7

Keywords

Navigation