Skip to main content

Advertisement

Log in

Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Composites filled with a silicate glass (CSi) and a new borate glass (CB) were developed and compared in terms of their in vitro behaviour both in acellular and cellular media. Acellular tests were carried out in SBF and the composites were characterized by SEM-EDS, XRD and ICP. Biocompatibility studies were investigated by in vitro cell culture with MG-63 osteoblast-like and human bone marrow cells. The growth of spherical calcium phosphate aggregates was observed in acellular medium on all composite surfaces indicating that these materials became potentially bioactive. The biological assessment resulted in a dissimilar behavior of the composites. The CSi demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. Contrarily, inhibition of cell proliferation occurred in the CB probably due to its high degradation rate, leading to high B and Mg ionic concentration in the cell culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Basgorenay B, Ulubayram K, Serbetci K, Onurhan E, Hasirci N. Preparation, modification and characterization of acrylic cements. J Appl Polym Sci. 2006;99:3631–7.

    Article  CAS  Google Scholar 

  2. Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res B. 1997;38:155–82.

    Article  CAS  Google Scholar 

  3. Lopes P, Corbellini M, Leite Ferreira B, Almeida N, Fredel M, Fernandes MH, Correia R. New PMMA-co-EHA glass filled composites for biomedical application: mechanical properties and bioactivity. Acta Biomater. 2009;5:356–62.

    Article  CAS  Google Scholar 

  4. Kenni SM, Buggy M. Bone cements and fillers: a review. J Mater Sci-Mater M. 2003;14:923–38.

    Article  Google Scholar 

  5. Takadama H, Kim HM, Kokubo T, Nakamura T. X-ray photoelectron spectroscopy study on the process of apatite formation on a sodium silicate glass in simulated body fluid. J Am Ceram Soc. 2002;85:1933–6.

    Article  CAS  Google Scholar 

  6. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  Google Scholar 

  7. Kim CY, Clark AE, Hench LL. Early stages of calcium-phosphate layer formation in bioglasses. J Non-Cryst Solids. 1989;113:195–202.

    Article  CAS  Google Scholar 

  8. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  9. Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific; 1993.

    Google Scholar 

  10. Huang W, Day DE, Kittiratanapiboon K, Rahaman MN. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci-Mater M. 2006;17:583–96.

    Article  CAS  Google Scholar 

  11. Yao A, Wang D, Huang W, Fu Q, Rahaman M, Day D. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc. 2007;90:303–6.

    Article  CAS  Google Scholar 

  12. Gorustovich AA, Porto-Lopez JM, Guglielmotti MB, Cabrini RL. Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed Mater. 2006;1:100–5.

    Article  CAS  Google Scholar 

  13. Brown RF, Rahaman MN, Dwilewicz AB. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J Biomed Mater Res A. 2009;88A:392–400.

    Article  CAS  Google Scholar 

  14. Oliveira JM. MSc Thesis. University of Aveiro, 1994 (in Portuguese).

  15. Oliveira JM, Correia RN, Fernandes MH. Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials. 2002;23:371–9.

    Article  CAS  Google Scholar 

  16. Lopes PP, Leite Ferreira BJM, Almeida NAF, Fredel MC, Fernandes MHV, Correia RN. Preparation and study of in vitro bioactivity of PMMA-co-EHA composites filled with a Ca3(PO4)2–SiO2–MgO glass. Mater Sci Eng C. 2008;28:572–7.

    Article  CAS  Google Scholar 

  17. Kokubo T, Takadama H. How useful is SBF predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  18. Clover J, Gowen M. Are MG63 and HOS TE 85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone. 1994;15:585–91.

    Article  CAS  Google Scholar 

  19. Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials. 2000;21:1095–102.

    Article  CAS  Google Scholar 

  20. Coelho MJ, Trigo Cabral A, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part I: osteoblastic differentiation of serially passaged human bone marrow cells cultured in α-MEM and in DMEM. Biomaterials. 2000;21:1087–94.

    Article  CAS  Google Scholar 

  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  22. Bellows CG, Aubin JE, Heersche JNM. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Min. 1991;14:27–40.

    Article  CAS  Google Scholar 

  23. Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng C. 2009;29:2275–81.

    Article  CAS  Google Scholar 

  24. Vallet-Regi M, Romero AM, Ragel CV, LeGeros RZ. XRD, SEM-EDS and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J Biomed Mater Res A. 1999;44:416–21.

    Article  CAS  Google Scholar 

  25. X-ray powder data file, ASTM 09–0432.

  26. Vallet-Regi M, Salinas AJ, Roman J, Gil M. Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J Mater Chem. 1999;9:515–8.

    Article  CAS  Google Scholar 

  27. Perez-Pariente J, Balas F, Roman J, Salinas AJ, Vallet-Regi M. Influence of composition and surface characteristics on the in vitro bioactivity of SiO2–CaO–P2O5–MgO sol–gel glasses. J Biomed Mater Res. 1999;47:170–5.

    Article  CAS  Google Scholar 

  28. Qi G, Zhang S, Khor KA, Liu C, Zeng X, Weng W, Qian M. In vitro effect of magnesium inclusion in sol–gel derived apatite. Thin Solid Films. 2008;516:5176–80.

    Article  CAS  Google Scholar 

  29. Mayer I, Schlam R, Featherstone JDB. Magnesium-containing carbonate apatites. J Inorg Biochem. 1997;66:1–6.

    Article  CAS  Google Scholar 

  30. Aubin JE, Turksen K, Heersch JNM. Osteoblastic cell lineage. In: Noda M, editor. Cellular and molecular biology of bone. Tokyo: Academic Press; 1999. p. 1–45.

    Google Scholar 

  31. Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S. Ca, P-rich layer formed on high-strength bioactive glass–ceramic A-W. J Biomed Mater Res. 1990;24:331–43.

    Article  CAS  Google Scholar 

  32. De Bruijn JD, Van Blitterswijk CA, Davies JE. Initial bone matrix formation at the hydroxyapatite interface in vivo. J Biomed Mater Res. 1995;29:89–99.

    Article  Google Scholar 

  33. Hulshoff JEG, Van Dijk K, De Ruijter JE, Rietveld FJR, Ginsel LA, Jansen JA. Interfacial phenomena: an in vitro study of the effect of calcium phosphate (Ca–P) ceramic on bone formation. J Biomed Mater Res. 1998;40:464–74.

    Article  CAS  Google Scholar 

  34. Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28:4023–32.

    Article  CAS  Google Scholar 

  35. Keeting P, Oursler M, Wiegand K, Bonde S, Spelsberg T, Riggs B. Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblastlike cells in vitro. J Bone Miner Res. 1992;7:1281–9.

    Article  CAS  Google Scholar 

  36. Dobbie J, Smith M. The silicon content of body fluids. Scot Med J. 1982;27:17–9.

    CAS  Google Scholar 

  37. Ryan LM, Cheung HS, LeGeros RZ, Kurup IV, Toth J, Westfall PR, McCarthy GM. Cellular responses to whitlockite. Calcified Tissue Int. 1999;65:374–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) and the Center for Research in Ceramic and Composite Materials, CICECO, at the University of Aveiro for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. V. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, P.P., Ferreira, B.J.M.L., Gomes, P.S. et al. Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study. J Mater Sci: Mater Med 22, 1501–1510 (2011). https://doi.org/10.1007/s10856-011-4331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4331-6

Keywords

Navigation