Skip to main content
Log in

Combined Effect and Mechanism of Acidity and Lead Ion on Soybean Biomass

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution and soil acidification are serious global environmental issues. The combined pollution from acidification and heavy metal has become a new environmental issue in regions where the two issues simultaneously occur. However, studies on combined pollution are still limited. In the current study, we investigated the combined effect and mechanism of acidity and heavy metal [lead ion (Pb2+)] on soybean biomass as well as on growth, nitrogen nutrition, and antioxidant system in soybean roots. Results showed that the combined treatment with acidity and Pb2+ decreased the soybean biomass. At pH 4.5, the soybean biomass in the combined treatment with acidity and 0.9 mmol L−1 Pb2+ was lower than that in the combined treatment with acidity and Pb2+ at 0.3 or 1.5 mmol L−1. This result was also observed at pH 3.5 and 3.0. The combined treatment with acidity and Pb2+ also resulted in the following consequences: root growth inhibition; decrease in nitrate, ammonium, and malondialdehyde contents; increase in nitrite reductase activity; and decrease in peroxidase activity. The extent at which the test indexes decreased/increased in the combined treatment was higher than that in the single acidity treatment. The correlation analysis results indicated that the decrease in the soybean biomass in the combined treatment with acidity and Pb2+ resulted from the decrease in the root growth, nitrate–nitrogen assimilation, and peroxidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  2. Yi ZH, Ying H, Yun XL (2009) Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecol Sin 29(6):320–326

    Article  Google Scholar 

  3. Li FL, Liu CQ, Yang YG, Bi XY, Liu TZ, Zhao ZQ (2012) Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: a Pb isotopic approach. Sci Total Environ 431:339–347

    Article  PubMed  CAS  Google Scholar 

  4. Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  PubMed  CAS  Google Scholar 

  5. Eick MJ, Peak JD, Brady PV, Pesek JD (1999) Kinetics of lead adsorption/desorption on goethite: residence time effect. Soil Sci 164(1):28–39

    Article  CAS  Google Scholar 

  6. Ribeiro de Souza SC, Lopez de Andrade S, Anjos de Souza L, Schiavinato MA (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage 110:299–307

    Article  PubMed  CAS  Google Scholar 

  7. Wu X, Huang H, Liu XQ, Chen L, Liu C, Su MY, Hong FS (2008) Oxidative stress induced by lead in chloroplast of spinach. Biol Trace Elem Res 126(1–3):257–268

    PubMed  CAS  Google Scholar 

  8. Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34(11):2467–2493

    Article  PubMed  CAS  Google Scholar 

  9. Burzynski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42(4):505–510

    Article  CAS  Google Scholar 

  10. Xu RK, Ji GL (2001) Effects of H2SO4 and HNO3 on soil acidification and aluminum speciation in variable and constant charge soils. Water Air Soil Pollut 129(1–4):33–43

    Article  CAS  Google Scholar 

  11. Zhang JE, Ouyang Y, Ling DJ (2007) Impacts of simulated acid rain on cation leaching from the Latosol in south China. Chemosphere 67(11):2131–2137

    Article  PubMed  CAS  Google Scholar 

  12. Larssen T, Lydersen E, Tang DG, He Y, Gao JX, Liu HY, Duan L, Seip HM, Vogt RD, Mulder J, Shao M, Wang YH, Shang H, Zhang XS, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Liu QR, Zhao DW, Xiang RJ, Xiao JS, Luo JH (2006) Acid rain in China. Environ Sci Technol 40(2):418–425

    Article  PubMed  CAS  Google Scholar 

  13. Ruuhola T, Rantala LM, Neuvonen S, Yang S, Rantala MJ (2009) Effects of long-term simulated acid rain on a plant-herbivore interaction. Basic Appl Ecol 10(7):589–596

    Article  CAS  Google Scholar 

  14. Dias BB, MdL L, Farago PV, de Oliveira AV, Beruski GC (2010) Sulfur effect by simulated acid rain on morphophysiological parameters of the bean plant. Acta Sci-Agron 32(3):433–439

    CAS  Google Scholar 

  15. Singh A, Agrawal M (2008) Acid rain and its ecological consequences. J Environ Biol 29(1):15–24

    PubMed  CAS  Google Scholar 

  16. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208

    Article  PubMed  CAS  Google Scholar 

  17. Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. Adv Agron 110:251–331

    CAS  Google Scholar 

  18. Environmental Protection Agency (2012) Ecological effects test guidelines, OPPTS 850,4000-background and special consideration-test with terrestrail and aquatic plants, cyanobacteria, and terrtstrail soil-core microcosms,Washington, DC

  19. Raney T (2006) Economic impact of transgenic crops in developing countries. Curr Opin Biotechnol 17(2):174–178

    Article  PubMed  CAS  Google Scholar 

  20. Li T, Yang X, Lu L, Islam E, He Z (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169(1):734–741

    Article  PubMed  CAS  Google Scholar 

  21. Beda N, Nedospasov A (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide-Biol Ch 13(2):93–97

    Article  CAS  Google Scholar 

  22. Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campins-Falco P (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. Trac-Trend Anal Chem 25(3):282–290

    Article  CAS  Google Scholar 

  23. Ida S, Mori E, Morita Y (1974) Purification, stabilization and characterization of nitrite reductase from barley roots. Planta 121(3):213–224

    Article  CAS  Google Scholar 

  24. Scholl RL, Harper JE, Hageman RH (1974) Improvements of the nitrite color development in assays of nitrate reductase by phenazine methosulfate and zinc acetate. Plant Physiol 53(6):825–828

    Article  PubMed  CAS  Google Scholar 

  25. Aslam M, Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol 91:1152–1156

    Article  PubMed  CAS  Google Scholar 

  26. Joy K, Hageman R (1966) The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Biochem J 100(1):263

    PubMed  CAS  Google Scholar 

  27. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    Article  CAS  Google Scholar 

  28. Beers R, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    PubMed  CAS  Google Scholar 

  29. Hammerschmidt R, Nuckles E, Kuć J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20(1):73–82

    Article  CAS  Google Scholar 

  30. Spychalla JP, Desborough SL (1990) Fatty acids, membrane permeability, and sugars of stored potato tubers. Plant Physiol 94(3):1207–1213

    Article  PubMed  CAS  Google Scholar 

  31. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136(1):2483–2499

    Article  PubMed  CAS  Google Scholar 

  32. Gong X, Qu C, Liu C, Hong M, Wang L, Hong FS (2011) Effects of manganese deficiency and added cerium on nitrogen metabolism of maize. Biol Trace Elem Res 144(1–3):1240–1250

    Article  PubMed  CAS  Google Scholar 

  33. Wang H, Ahan J, Wu Z, Shi D, Liu B, Yang C (2011) Alteration of nitrogen metabolism in rice variety ′Nipponbare′ induced by alkali stress. Plant Soil 355(1–2):131–147

    Google Scholar 

  34. Sun H, Wang L, Zhou Q (2013) Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings. Environ Toxicol Chem 32(1):174–180

    Article  PubMed  CAS  Google Scholar 

  35. Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L, Hong FS (2011) Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol Trace Elem Res 144(1–3):1159–1174

    Article  PubMed  CAS  Google Scholar 

  36. Song WP, Hong FS, Wan ZG, Zhou YZ, Gu FG, Xu HG, Yu ML, Chang YH, Zhao MJ, Su JL (2003) Effects of cerium on nitrogen metabolism of peach plantlet in vitro. Biol Trace Elem Res 95(3):259–268

    Article  CAS  Google Scholar 

  37. Liao C, Pan BF, Cao WQ, Lu Y, Huang H, Chen L, Liu XQ, Wu X, Hong FS (2008) Influences of calcium deficiency and cerium on growth of spinach plants. Biol Trace Elem Res 121(3):266–275

    Article  Google Scholar 

  38. Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong FS (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132(1–3):247–258

    Article  PubMed  CAS  Google Scholar 

  39. Wu X, Liu C, Qu C, Huang H, Liu X, Chen L, Su M, Hong FS (2008) Influences of lead (II) chloride on the nitrogen metabolism of spinach. Biol Trace Elem Res 121(3):258–265

    Article  PubMed  CAS  Google Scholar 

  40. Marti MC, Camejo D, Fernandez-Garcia N, Rellan-Alvarez R, Marques S, Sevilla F, Jimenez A (2009) Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J Hazard Mater 171(1–3):879–885

    Article  PubMed  CAS  Google Scholar 

  41. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  42. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48(12):909–930

    Article  CAS  Google Scholar 

  43. Kumar GNM, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol 102(1):115–124

    PubMed  CAS  Google Scholar 

  44. Maeda H, Sage TL, Isaac G, Welti R, DellaPenna D (2008) Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20(2):452–470

    Article  PubMed  CAS  Google Scholar 

  45. Wang Y, Zhou M, Gong X, Liu C, Hong M, Wang L, Hong FS (2011) Influence of lanthanides on the antioxidative defense system in maize seedlings under cold stress. Biol Trace Elem Res 142(3):819–830

    Article  PubMed  CAS  Google Scholar 

  46. Liao B, Guo Z, Probst A, Probst J-L (2005) Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China. Geoderma 127(1):91–103

    Article  CAS  Google Scholar 

  47. Liao BH, Liu HY, Zeng QR, Yu PZ, Probst A, Probst JL (2005) Complex toxic effects of Cd2+, Zn 2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L). Environ Int 31(6):891–895

    Article  PubMed  CAS  Google Scholar 

  48. Antoniadis V, Robinson J, Alloway B (2008) Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71(4):759–764

    Article  PubMed  CAS  Google Scholar 

  49. Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159(1):84–91

    Article  PubMed  CAS  Google Scholar 

  50. Nautiyal N, Sinha P (2012) Lead induced antioxidant defense system in pigeon pea and its impact on yield and quality of seeds. Acta Physiol Plant 34(3):977–983

    Article  CAS  Google Scholar 

  51. Skórzyńska-Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Con Tox 50(4):482–487

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the financial support of the Natural Science Foundation of China (31170477) and the Natural Science Foundation of Jiangsu Province (BK2011160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Xiaohua Huang.

Additional information

Shengman Wang and Lihong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Wang, L., Zhou, Q. et al. Combined Effect and Mechanism of Acidity and Lead Ion on Soybean Biomass. Biol Trace Elem Res 156, 298–307 (2013). https://doi.org/10.1007/s12011-013-9814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9814-5

Keywords

Navigation