Skip to main content
Log in

Influence of Several Sources and Amounts of Iron on DNA, Lipid and Protein Oxidative Damage During Anaemia Recovery

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The study was designed to assess the effect of several Fe amounts and sources on haematological parameters, DNA, lipid and protein oxidative damage during the course of Fe-deficiency anaemia recovery. Peripheral DNA damage was assessed using an alkaline comet assay. The brain, liver, erythrocyte and duodenal mucosa lipid peroxidation and protein damage were assessed in control and anaemic rats after Fe repletion with three different sources (FeSO4, haem Fe, and FeSO4 + haem Fe) and amounts (45, 12, and 31 mg Fe/kg diet) of Fe: F diet, H diet or C diet, respectively. After supplying the diets, the haematological parameters studied were recovered; being remarkable is the haemoglobin increase. The DNA damage was lower in rats with the H diet, as revealed by the percentage of DNA in head, tail and Olive tail moment compared in rats with the F (P < 0.001) and C (P < 0.05) diets. Lipid peroxidation was similar in all the tissues, except in the duodenal mucosa which was lower with H and C diets (P < 0.001). The animals fed with C diet showed lower oxidative protein damage in the duodenal mucosa (P < 0.001) and was also lower in the liver and erythrocytes for H and C diets (P < 0.001). No differences were found in the brain under our experimental conditions. In conclusion, Fe supplementation with low doses of haem Fe or combined forms of non-haem and haem Fe (FeSO4 + haem) are efficient in restoring the impaired haematological parameters and prevent the evoked oxidative stress associated with Fe supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephenson LS, Lathan MC, Ottesen EA (2000) Global malnutrition. Parasitology 121:S5–S22

    Article  PubMed  Google Scholar 

  2. Campos MS, Barrionuevo M, Alférez MJM, Gómez-Ayala AE, Rodríguez-Matas MC, López-Aliaga I, Lisbona F (1998) Interactions among iron, calcium, phosphorus and magnesium in nutritionally iron-deficient rats. Exp Physiol 83:771–781

    PubMed  CAS  Google Scholar 

  3. Parkkila S, Niemela O, Savolainen ER, Koistinen P (2001) HFE mutations do not account for transfusional iron overload in patients with acute myeloid leukemia. Transfusion 41:828–831

    Article  PubMed  CAS  Google Scholar 

  4. Lisbona F, Reyes-Andrada MD, López-Aliaga I, Barrionuevo M, Alférez MJM, Campos MS (1999) The importance of the proportion of heme/nonheme iron in the diet to minimize the interference with calcium, phosphorus, and magnesium metabolism on recovery from nutritional ferropenic anemia. J Agric Food Chem 5:2026–2032

    Article  Google Scholar 

  5. González R, Aznar E, González M, Hernández JC, Varela A, Silva P, García Y (2008) Nueva línea de productos para prevenir y tratar la anemia partiendo del hierro hemínico. Informacéutico 15:43–48

    Google Scholar 

  6. Aznar E, González R, González M (2001) Prevención de la deficiencia de hierro en embarazadas suplementadas con productos de origen natural, Neotrofín (tabletas) y Trofin®Vital (Líquido). Rev Cub Farm 35:269–273

    Google Scholar 

  7. Aznar E, González R, Moroño M, González M (1998) Tratamiento antianémico hierro-proteína (Trofin®) para uso Pediátrico. Rev Mex Cienc Farmac 29:18–21

    Google Scholar 

  8. Aust AE, Eveleigh JF (1999) Mechanisms of DNA oxidation. Proc Soc Exp Biol Med 222:246–252

    Article  PubMed  CAS  Google Scholar 

  9. Hubel CA, Kozlov AV, Kagan VE, Evans RW, Davidge ST, Mclauglin MK, Roberts JM (1996) Decreased transferrin and increased transferrin saturation in sera of women with pre-eclampsia: implications for oxidative stress. Am J Obstet Gynecol 175:692–700

    Article  PubMed  CAS  Google Scholar 

  10. Pietrangelo A (1998) Iron, oxidative stress, and liver fibrogenesis. J Hepatol 28:8–13

    Article  PubMed  CAS  Google Scholar 

  11. Dizdaroglu M, Nackerdien Z, Chao BC, Gajewski E, Rao G (1991) Chemical nature of in vivo base damage in hydrogen peroxide treated mammalian cells. Arch Biochem Biophys 285:388–390

    Article  PubMed  CAS  Google Scholar 

  12. Ghaffari S (2008) Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal 10:1923–1940

    Article  PubMed  CAS  Google Scholar 

  13. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition and ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  14. Pallarés I, Lisbona F, López-Aliaga I, Barrionuevo M, Alférez MJM, Campos MS (1993) Effects of iron deficiency on the digestive utilization of iron, phosphorus, calcium and magnesium in rats. Br J Nutr 70:609–620

    Article  PubMed  Google Scholar 

  15. Duthie SJ, Hawdon A (1998) DNA stability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J 12:1491–1497

    PubMed  CAS  Google Scholar 

  16. DeSandro V, Chevrier M, Boddaert A, Melcion C, Cordier A, Richiert L (1991) Comparison of the effects of propylthiouracil, diphenyl hydantoin, phenobarbital and 3 methylcholanthrene on hepatic and renal T4 metabolism and thyroid gland function in rats. Toxicol Appl Pharmacol 111:263–278

    Article  CAS  Google Scholar 

  17. Hanahan DJ, Ekholm JE (1974) The preparation of red cell ghosts (membranes). Meth Enzymol 31:168–172

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosenburgh NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–270

    PubMed  CAS  Google Scholar 

  19. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216

    Article  PubMed  CAS  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  21. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  22. Strube YNJ, Beard JL, Ross AC (2002) Iron deficiency and marginal vitamin A deficiency affect growth hematological indices and the regulation of iron metabolism genes in rats. J Nutr 132:3607–3615

    PubMed  CAS  Google Scholar 

  23. Beard JL, Brigham DE, Kelley SK, Green MH (1998) Plasma thyroid hormone kinetics are altered in iron-deficient rats. J Nutr 128:1401–1408

    PubMed  CAS  Google Scholar 

  24. Díaz-Castro J, Alférez MJ, López-Aliaga I, Nestares T, Granados S, Barrionuevo M, Campos MS (2008) Influence of nutritional iron deficiency anemia on DNA stability and lipid peroxidation in rats. Nutrition 24:1167–1173

    Article  PubMed  Google Scholar 

  25. Schneider JM, Fujii ML, Lamp CL, Lönnerdal B, Dewey KG, Zidenberg-Cherr S (2008) The use of multiple logistic regression to identify risk factors associated with anemia and iron deficiency in a convenience sample of 12–36-mo-old children from low-income families. Am J Clin Nutr 87:614–620

    PubMed  CAS  Google Scholar 

  26. Raghuveer P, Vidya P, Prabhu RS (2009) Iron overload in beta thalassemia—a review. J Biosci Tech 1:20–31

    Google Scholar 

  27. West AR, Oates PS (2008) Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 14:4101–4110

    Article  PubMed  CAS  Google Scholar 

  28. Theil EC, Raymond KN (1994) Metals in medicine. In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic chemistry. University Science Books, Mill Valley, pp 1–36

    Google Scholar 

  29. Hider RC, Kong XL (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  PubMed  CAS  Google Scholar 

  30. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  PubMed  CAS  Google Scholar 

  31. Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100:3776–3781

    Article  PubMed  CAS  Google Scholar 

  32. Ben-Assa E, Youngster I, Kozer E, Abu-Kishk I, Bar-Haim A, Bar-Oz B, Berkovitch M (2009) Changes in serum hepcidin levels in acute iron intoxication in a rat model. Toxicol Lett 189:242–247

    Article  PubMed  CAS  Google Scholar 

  33. Alayash AI, Patel RP, Cashon RE (2001) Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antiox Redox Signal 3:313–327

    Article  CAS  Google Scholar 

  34. Gil L, Siems W, Mazurek B, Gross J, Schroeder P, Voss P, Grune T (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Rad Res 40:495–505

    Article  CAS  Google Scholar 

  35. Crichton RR, Danielsson BG, Geisser P (2008) Iron metabolism: biologic and molecular aspects. In: Crichton RR, Danielsson BG, Geisser P (eds) Iron therapy with special emphasis on intravenous administration, 4th edn. UNI-Med Verlag AG, Bremen, pp 14–24

    Google Scholar 

  36. Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm 118:301–314

    Article  PubMed  CAS  Google Scholar 

  37. Moos T, Rosengren NT, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740

    Article  PubMed  CAS  Google Scholar 

  38. Díaz-Castro J, Pérez-Sánchez LJ, Ramírez López-Frías M, López-Aliaga I, Nestares T, Alférez MJ, Ojeda ML, Campos MS (2012) Influence of cow or goat milk consumption on antioxidant defence and lipid peroxidation during chronic iron repletion. Br J Nutr 108:1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Inter Ministerial Commission of Science and Technology (CICYT) research project no. AGL-2006-02301/ALI and by the Agencia Española de Colaboración Internacional para el Desarrollo (AECID). The authors are grateful to Ms. Elisa Alcover for her efficient administrative support and Encarnación Rebollo and Francisco Benítez for their technical assistance. The English revision of the manuscript was done by Carolina Martínez Vetter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Díaz-Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Castro, J., García, Y., López-Aliaga, I. et al. Influence of Several Sources and Amounts of Iron on DNA, Lipid and Protein Oxidative Damage During Anaemia Recovery. Biol Trace Elem Res 155, 403–410 (2013). https://doi.org/10.1007/s12011-013-9802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9802-9

Keywords

Navigation