Skip to main content
Log in

Effect of CdTe Quantum Dots Size on the Conformational Changes of Human Serum Albumin: Results of Spectroscopy and Isothermal Titration Calorimetry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) are recognized as some of the most promising candidates for future applications in biomedicine. However, concerns about their safety have delayed their widespread application. Human serum albumin (HSA) is the main protein component of the circulatory system. It is important to explore the interaction of QDs with HSA for the potential in vivo application of QDs. Herein, using spectroscopy and isothermal titration calorimetry (ITC), the effect of glutathione-capped CdTe quantum dots of different sizes on the HSA was investigated. After correction for the inner filter effect, the fluorescence emission spectra and synchronous fluorescence spectra showed that the microenvironment of aromatic acid residues in the protein was slightly changed when the glutathione (GSH)–cadmium telluride (CdTe) QDs was added, and GSH–CdTe QDs with larger particle size exhibited a much higher effect on HSA than the small particles. Although a ground-state complex between HSA and GSH–CdTe QDs was formed, the UV–vis absorption and circular dichroism spectroscopic results did not find appreciable conformational changes of HSA. ITC has been used for the first time to characterize the binding of QDs with HSA. The ITC results revealed that the binding was a thermodynamically spontaneous process mainly driven by hydrophobic interactions, and the binding constant tended to increase as the GSH–CdTe QDs size increased. These findings are helpful in understanding the bioactivities of QDs in vivo and can be used to assist in the design of biocompatible and stable QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Persp 114(2):165–172

    Article  Google Scholar 

  2. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  PubMed  Google Scholar 

  3. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732

    Article  CAS  PubMed  Google Scholar 

  4. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Nalwa HS (2007) Nanotechnology and health safety-toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechno 7(9):3048–3070

    Article  CAS  Google Scholar 

  6. Wang J, Jensen UB, Jensen GV, Shipovskov S, Balakrishnan VS, Otzen D, Pedersen JS, Besenbacher F, Sutherland DS (2011) Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett 11(11):4985–4991

    Article  CAS  PubMed  Google Scholar 

  7. Yang BJ, Liu RT, Hao XP, Wu YZ, Du J (2012) The interactions of glutathione-capped CdTe quantum dots with trypsin. Biol Trace Elem Res 146(3):396–401

    Article  CAS  PubMed  Google Scholar 

  8. Xiao JB, Chen LS, Yang F, Liu CX, Bai YL (2010) Green, yellow and red emitting CdTe QDs decreased the affinities of apigenin and luteolin for human serum albumin in vitro. J Hazard Mater 182(1–3):696–703

    Article  CAS  PubMed  Google Scholar 

  9. Zhao LZ, Liu RT, Zhao XC, Yang BJ, Gao CZ, Hao XP, Wu YZ (2009) New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin. Sci Total Environ 407(18):5019–5023

    Article  CAS  PubMed  Google Scholar 

  10. Liang JG, Cheng YP, Han HY (2008) Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques. J Mol Struct 892(1–3):116–120

    Article  CAS  Google Scholar 

  11. Wang QS, Zhang XL, Zhou XL, Fang TT, Liu PF, Liu P, Min XM, Li X (2012) Interaction of different thiol-capped CdTe quantum dots with bovine serum albumin. J Lumin 132(7):1695–1700

    Article  CAS  Google Scholar 

  12. He YQ, Yin PF, Gong HP, Peng JJ, Liu SP, Fan XQ, Yan SG (2011) Characterization of the interaction between mercaptoethylamine capped CdTe quantum dots with human serum albumin and its analytical application. Sens Actuators, B 157(1):8–13

    Article  CAS  Google Scholar 

  13. Lai L, Lin C, Xu ZQ, Han XL, Tian FF, Mei P, Li DW, Ge YS, Jiang FL, Zhang YZ, Liu Y (2012) Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Spectrochim Acta, Part A 97:366–376

    Article  CAS  Google Scholar 

  14. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260–1264

    Article  CAS  Google Scholar 

  15. Kubista M, Sjoback R, Eriksson S, Albinsson B (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119(3):417–419

    Article  CAS  Google Scholar 

  16. van de Weert M, Stella L (2011) Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. J Mol Struct 998(1–3):144–150

    Article  Google Scholar 

  17. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  18. Wang L, Gong HB, Lv RJ, Wu YZ, Wang TH (2010) A one-pot aqueous synthesis of high-luminescent thiol-capped CdTe and its bioapplication. J Nanosci Nanotechno 10(8):5106–5110

    Article  CAS  Google Scholar 

  19. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  CAS  Google Scholar 

  20. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Liu G (2001) Poly(solketal methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(allyl methacrylate): synthesis and micelle formation. Macromolecules 34(5):1302–1307

    Article  CAS  Google Scholar 

  22. Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD (2004) Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim Biophys Acta, Gen Subj 1674(2):205–214

    Article  CAS  Google Scholar 

  23. Abou-Zied OK, Al-Shihi OIK (2008) Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J Am Chem Soc 130(32):10793–10801

    Article  CAS  PubMed  Google Scholar 

  24. Joshi P, Shewale V, Pandey R, Shanker V, Hussain S, Karna SP (2011) Tryptophan-gold nanoparticle interaction: a first-principles quantum mechanical study. J Phys Chem C 115(46):22818–22826

    Article  CAS  Google Scholar 

  25. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    Article  CAS  Google Scholar 

  26. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agr Food Chem 53(1):158–163

    Article  CAS  Google Scholar 

  27. Fu JX, Ge YS, Jiang FL, Sun XH, Liu Y, Liu Y (2011) Spectroscopic and molecular modeling studies on the interaction between a fluorine-containing triazole derivative and human serum albumin. Biol Trace Elem Res 143(1):562–578

    Article  CAS  PubMed  Google Scholar 

  28. Gauthier TD, Shane EC, Guerin WF, Seitz WR, Grant CL (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20(11):1162–1166

    Article  CAS  Google Scholar 

  29. He WY, Li Y, Xue CX, Hu ZD, Chen XG, Sheng FL (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorgan Med Chem 13(5):1837–1845

    Article  CAS  Google Scholar 

  30. Monti S, Manet I, Marconi G (2011) Combination of spectroscopic and computational methods to get an understanding of supramolecular chemistry of drugs: from simple host systems to biomolecules. Phys Chem Chem Phys 13(47):20893–20905

    Article  CAS  PubMed  Google Scholar 

  31. Zhang T, Yao K, Guo Y (2011) The photocatalytic activity of TiO2 thin film deposited on Al plate together with Cu (II) and Ag (I). Biol Trace Elem Res 143(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  32. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637

    Article  CAS  PubMed  Google Scholar 

  33. Aldana J, Wang YA, Peng XG (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123(36):8844–8850

    Article  CAS  PubMed  Google Scholar 

  34. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  35. Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7(7):1991–1995

    Article  CAS  PubMed  Google Scholar 

  36. Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20(24):10639–10647

    Article  CAS  PubMed  Google Scholar 

  37. Rosa PAJ, Azevedo AM, Aires-Barros MR (2007) Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. J Chromatogr A 1141(1):50–60

    Article  CAS  PubMed  Google Scholar 

  38. Soltys-Robitaille CE, Ammon DM, Valint PL, Grobe GL (2001) The relationship between contact lens surface charge and in-vitro protein deposition levels. Biomaterials 22(24):3257–3260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (20875055, 21277081), the Cultivation Fund of the Key Scientific and Technical Innovation Project, and the Ministry of Education of China (708058). Independent innovation program of Jinan (201202083) and Independent innovation Foundation of Shandong University natural science projects (2012DX002) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutao Liu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Liu, R., Hao, X. et al. Effect of CdTe Quantum Dots Size on the Conformational Changes of Human Serum Albumin: Results of Spectroscopy and Isothermal Titration Calorimetry. Biol Trace Elem Res 155, 150–158 (2013). https://doi.org/10.1007/s12011-013-9771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9771-z

Keywords

Navigation