Skip to main content
Log in

The Photocatalytic Activity of TiO2 Thin Film Deposited on Al Plate Together with Cu(II) and Ag(I)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cu (II) and Ag(I) together with TiO2 powder were deposited on conducting support substrates to enhance the photocatalytic ability. The catalytic efficiency was tested by monitoring the photocatalytic degradation and detriment of methylene blue (MB) and bovine serum albumin (BSA). The conformational change of BSA induced by catalysts was also observed by circular dichroism spectroscopy.The antibacterial activities were studied by Escherichia coli. Both MB and BSA could be degraded more efficiently than pure TiO2. After treatment with catalyst, the morphology of cells became twisted and rougher. Regular wrinkles were damaged and groove-like rift appeared on the surface. The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Changes of the spectral profile of E. coli were observed, which suggested the damages of surface groups on the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Zang L, Lange C, Abraham I et al (1998) Amorphous microporous titania modified with platinum(IV) chloride—a new type of hybrid photocatalyst for visible light detoxification. J Phys Chem B 102:10765–10771

    Article  CAS  Google Scholar 

  3. Parida KM, Naik B (2009) Synthesis of mesoporous TiO2–xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination. J Colloid Interface Sci 333:269–276

    Article  PubMed  CAS  Google Scholar 

  4. Su WY, Chen EX, Wu L et al (2008) Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method. Appl Catal B EnViron 77:264–271

    Article  CAS  Google Scholar 

  5. Nagaveni K, Sivalingam G, Hegde MS et al (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B EnViron 48:83–93

    Article  CAS  Google Scholar 

  6. Zhou JK, Zhang YX, Zhan XS et al (2006) Photodegradation of benzoic acid over metal-doped TiO2. Ind Eng Chem Res 45:3503–3513

    Article  CAS  Google Scholar 

  7. Li GS, Li LP, Boerio-Goates J et al (2005) High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc 127:8659–8666

    Article  PubMed  CAS  Google Scholar 

  8. Watts RJ, Kong S, Orr MP et al (1995) Photocatalytic Inactivation of Coliform Bacteria and Viruses in Secondary Wastewater Effluent. Water Res 29:95–100

    Article  CAS  Google Scholar 

  9. Huang Z, Maness PC, Blake DM et al (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A Chem 130:163–170

    Article  CAS  Google Scholar 

  10. Maness PC, Smolinski S, Blake DM et al (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    PubMed  CAS  Google Scholar 

  11. Alemany LJ, Banares MA, Pardo E et al (1997) Photodegradation of phenol in water using silica-supported titania catalysts. Appl Catal B 13:289–297

    Article  CAS  Google Scholar 

  12. Brezova V, Blazakova A, Karpinsky L et al (1997) Phenol decomposition using Mn+/TiO2 photocatalysts supported by sol–gel technique on glass fibers. J Photochem Photobiol A Chem 109:177–183

    Article  CAS  Google Scholar 

  13. Martinet C, Paillard V, Gagnaire A et al (1997) Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating. J Non-Cryst Solids 216:77–82

    Article  CAS  Google Scholar 

  14. Brezova V, Blazkova A, Breznan M et al (1995) Phenol degradation on glass fibers with immobilized titanium dioxide particles. Collec Czech Chem Commun 60:788–794

    Article  CAS  Google Scholar 

  15. Nawi MA, Kean LC, Tanaka K et al (2003) Fabrication of photocatalytic TiO2-epoxidized natural rubber on Al plate via electrophoretic deposition. Appl Catal B Environ 46:165–174

    Article  CAS  Google Scholar 

  16. Fernández A, Lassaletta G, Jiménez VM et al (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B Environ 7:49–63

    Article  Google Scholar 

  17. Yang GQ (2005) Study on the Photocatalytic Degradation of Biomolecules, Master Degree of science for Fu Zhou University pp 55–60

  18. Li S, Wang YZ, Jiang JG et al (2007) pH-Dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721

    Article  Google Scholar 

  19. Chen L, Coleman W (1993) Cloning and characterization of the Escherichia coli K-12 rfa-2(rfaC)gene, a gene required for lipopolysaccharide inner core synthesis. J Bacteriol 175:2534–2540

    PubMed  CAS  Google Scholar 

  20. Liu P, Liu Y, Lu ZX et al (2004) Study on biological effect of La3+ on Escherichia coli by atomic force microscopy. J Inorg Biochem 98:68–72

    Article  PubMed  CAS  Google Scholar 

  21. Kuhry J, Fonteneau GP, Duportail G et al (1983) TMA-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell Biochem Biophys 5:129–143

    CAS  Google Scholar 

  22. Swan TM, Watson KC (1997) Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. J Microbiol 43:70–77

    CAS  Google Scholar 

  23. Hauser H, Hinckley CC, Krebs J et al (1977) The interaction of ions with phosphatidylcholine. Biochim Biophys Acta 468:364–377

    Article  PubMed  CAS  Google Scholar 

  24. Conti J, Halladay HN, Petersheim M (1987) An ionotropic phase transition in phosphatidylcholine: cation and anion cooperativity. Biochim Biophys Acta 902:53–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Harbin Engineering University for financial assistance. And thanks to Dr. Guo Bao of the Center for Biomedical Materials and Engineering of Harbin Engineering University for his useful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Yao, K. & Guo, Y. The Photocatalytic Activity of TiO2 Thin Film Deposited on Al Plate Together with Cu(II) and Ag(I). Biol Trace Elem Res 143, 1819–1827 (2011). https://doi.org/10.1007/s12011-011-9008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9008-y

Keyword

Navigation