Skip to main content
Log in

Psychological Stress Expands Low Molecular Weight Iron Pool in Cerebral Cortex, Hippocampus, and Striatum of Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have previously demonstrated that psychological stress (PS) can cause iron to accumulate in the cerebral cortex, hippocampus, and striatum of rats. However, why iron accumulates and in what oxidation state iron it accumulates in the brain of PS-exposed rats has not been well elucidated. In the present study, we investigated the influence of PS on the low molecular weight iron pool (LMWIP) in the rat brain. The results showed that: (1) PS significantly expanded LMWIP in the cerebral cortex, hippocampus, and striatum in rats; (2) PS caused derangement of pyramidal cells and reduced the layers of pyramidal CA1 and CA2 neurons; (3) PS exposure greatly lowered the expression of ferritin (Fn) and hephaestin (HP) in the rat cortex and hippocampus; and (4) PS decreased superoxide dismutase, glutathione peroxidase, and glutathione level and increased malondialdehyde level in the cerebral cortex, hippocampus, and striatum in rats. These results indicated that PS could expand LMWIP significantly, which may be attributed to PS-induced decrease in Fn, HP expression, and the subsequent reduction in iron storage and utilization, and expansion of LMWIP could in turn lead to aggravation of oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PS:

Psychological stress

LMWI:

Low molecular weight iron

LMWIP:

Low molecular weight iron pool

NHF III:

Nonheme ferric iron

NHF II:

Nonheme ferrous iron

Fn:

Ferritin

HP:

Hephaestin

CORT:

Corticosterone

ACTH:

Adrenocorticotropic hormone

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

References

  1. Jacobs A (1977) Low molecular weight intracellular iron transport compounds. Blood 50:433–439

    PubMed  CAS  Google Scholar 

  2. Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM (2009) Structural analysis of metal sites in proteins: non-heme iron sites as a case study. J Mol Biol 388:356–380

    Article  PubMed  CAS  Google Scholar 

  3. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  PubMed  CAS  Google Scholar 

  4. Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 43:1–16

    Article  PubMed  CAS  Google Scholar 

  5. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84:825–889

    Article  PubMed  CAS  Google Scholar 

  6. Breuer W, Epsztejn S, Cabantchik ZI (1996) Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett 382:304–308

    Article  PubMed  CAS  Google Scholar 

  7. Miller LL, Miller SC, Torti SV, Tsuji Y, Torti FM (1991) Iron-independent induction of ferritin H chain by tumor necrosis factor. Proc Natl Acad Sci U S A 88:4946–4950

    Article  PubMed  CAS  Google Scholar 

  8. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  9. Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson's disease. Drugs Aging 14:115–140

    Article  PubMed  CAS  Google Scholar 

  10. Qian ZM, Wang Q (1998) Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev 27:257–267

    Article  PubMed  CAS  Google Scholar 

  11. Bush AI (2003) The metallobiology of Alzheimer's disease. Trends Neurosci 26:207–214

    Article  PubMed  CAS  Google Scholar 

  12. McNeill A, Chinnery PF (2011) Neurodegeneration with brain iron accumulation. Handb Clin Neurol 100:161–172

    Article  PubMed  Google Scholar 

  13. Kaufer D, Soreq H (1999) Tracking cholinergic pathways from psychological and chemical stressors to variable neurodeterioration paradigms. Curr Opin Neurol 12:739–743

    Article  PubMed  CAS  Google Scholar 

  14. Miyashita T, Yamaguchi T, Motoyama K, Unno K, Nakano Y, Shimoi K (2006) Social stress increases biopyrrins, oxidative metabolites of bilirubin, in mouse urine. Biochem Biophys Res Commun 349:775–780

    Article  PubMed  CAS  Google Scholar 

  15. Wang L, Wang W, Zhao M, Ma L, Li M (2008) Psychological stress induces dysregulation of iron metabolism in rat brain. Neuroscience 155:24–30

    Article  PubMed  CAS  Google Scholar 

  16. Chen J, Shen H, Chen C, Wang W, Yu S, Zhao M, Li M (2009) The effect of psychological stress on iron absorption in rats. BMC Gastroenterol 9:83

    Article  PubMed  Google Scholar 

  17. Meguro R, Asano Y, Iwatsuki H, Shoumura K (2003) Perfusion-Perls and -Turnbull methods supplemented by DAB intensification for nonheme iron histochemistry: demonstration of the superior sensitivity of the methods in the liver, spleen, and stomach of the rat. Histochem Cell Biol 120:73–82

    Article  PubMed  CAS  Google Scholar 

  18. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7:103–108

    Article  PubMed  CAS  Google Scholar 

  19. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  21. Gutteridge JM (1992) Iron and oxygen radicals in brain. Ann Neurol 32(Suppl):S16–S21

    Article  PubMed  CAS  Google Scholar 

  22. Bradbury MW (1997) Transport of iron in the blood–brain–cerebrospinal fluid system. J Neurochem 69:443–454

    Article  PubMed  CAS  Google Scholar 

  23. Gray NK, Hentze MW (1994) Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J 13:3882–3891

    PubMed  CAS  Google Scholar 

  24. Pinero DJ Hu J, Connor JR (2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains. Cell Mol Biol (Noisy-le-grand) 46:761–776

    Google Scholar 

  25. Connor JR (2003) Iron transport proteins in the diseased brain. J Neurol Sci 207:112–113

    Article  PubMed  Google Scholar 

  26. Chen H, Attieh ZK, Su T, Syed BA, Gao H, Alaeddine RM, Fox TC, Usta J, Naylor CE, Evans RW et al (2004) Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 103:3933–3939

    Article  PubMed  CAS  Google Scholar 

  27. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199

    Article  PubMed  CAS  Google Scholar 

  28. Frazer DM, Vulpe CD, McKie AT, Wilkins SJ, Trinder D, Cleghorn GJ, Anderson GJ (2001) Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. Am J Physiol Gastrointest Liver Physiol 281:931–939

    Google Scholar 

  29. Simovich MJ, Conrad ME, Umbreit JN, Moore EG, Hainsworth LN, Smith HK (2002) Cellular location of proteins related to iron absorption and transport. Am J Hematol 69:164–170

    Article  PubMed  CAS  Google Scholar 

  30. Petrak J, Vyoral D (2005) Hephaestin—a ferroxidase of cellular iron export. Int J Biochem Cell Biol 37:1173–1178

    Article  PubMed  CAS  Google Scholar 

  31. Levi S, Yewdall SJ, Harrison PM, Santambrogio P, Cozzi A, Rovida E, Albertini A, Arosio P (1992) Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J 288(Pt 2):591–596

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30872120, 81001243) and Shanghai Natural Science Foundation (10ZR1437400). The authors thank Yu Danghui of Second Military Medical University Press for careful reading and critical corrections of the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Additional information

Kai Huang and Hongxia Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Li, H., Shen, H. et al. Psychological Stress Expands Low Molecular Weight Iron Pool in Cerebral Cortex, Hippocampus, and Striatum of Rats. Biol Trace Elem Res 146, 79–85 (2012). https://doi.org/10.1007/s12011-011-9230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9230-7

Keywords

Navigation