Skip to main content
Log in

Protection by Vanadium, a Contemporary Treatment Approach to Both Diabetes and Focal Cerebral Ischemia in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

There is now substantial epidemiological evidence that diabetes is a risk factor for cerebrovascular disease. The protection by vanadium from focal cerebral ischemia in diabetic rats was studied in this paper. Rats with streptozotocin-induced diabetes were subjected to middle cerebral artery occlusion followed by 4 weeks of administration of 0.6 mg/ml sodium orthovanadate in drinking water. Vanadium significantly improved the outcome in diabetic rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. Vanadium reduces brain damage in streptozotocin-induced diabetic rats by imitating action of insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37:265–278

    Article  PubMed  CAS  Google Scholar 

  2. Gil J, Miralpeix M, Carreras J, Bartrons R (1988) Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem 263:1868–1871

    PubMed  CAS  Google Scholar 

  3. Shechter Y (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 39:1–5

    Article  PubMed  CAS  Google Scholar 

  4. Elberg G, Li J, Shechter Y (1994) Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in cell-free experiments, depending on its oxidation state: possible role of endogenous vanadium in controlling cellular protein tyrosine kinase activity. J Biol Chem 269:9521–9527

    PubMed  CAS  Google Scholar 

  5. Morinville A, Maysinger D, Shaver A (1998) From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol Sci 19:452–460

    Article  PubMed  CAS  Google Scholar 

  6. Kawano T, Fukunaga K, Takeuchi Y, Morioka M, Yano S, Hamada J, Ushio Y, Miyamoto E (2001) Neuroprotective effect of sodium orthovanadate on delayed neuronal death after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab 21:1268–1280

    Article  PubMed  CAS  Google Scholar 

  7. Berger L, Hakim AM (1986) The association of hyperglycemia with cerebral edemain stroke. Stroke 17:865–871

    Article  PubMed  CAS  Google Scholar 

  8. Lukovits TG, Mazzone TM, Gorelick TM (1999) Diabetes mellitus and cerebrovascular disease. Neuroepidemiology 18:1–14

    Article  PubMed  CAS  Google Scholar 

  9. Li PA, Siesjo BK (1997) Role of hyperglycaemia-related acidosis in ischaemic brain damage. Acta Physiol Scand 161:567–580

    Article  PubMed  CAS  Google Scholar 

  10. Li P-A, Gisselsson L, Keuker J, Vogel J, Smith M-L, Kuschinsky W, Siesjo BK (1998) Hyperglycemia-exaggerated ischemic brain damage following 30 min of middle cerebral artery occlusion is not due to capillary obstruction. Brain Res 804:36–44

    Article  PubMed  CAS  Google Scholar 

  11. Gisselsson L, Smith M-L, Siesjo B (1999) Hyperglycemia and focal brain ischemia. J Cereb Blood Flow Metab 19:288–297

    Article  PubMed  CAS  Google Scholar 

  12. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  13. Preet A, Gupta BL, Yadava PK, Baquer NZ (2005) Efficacy of lower doses of vanadium in restoring altered glucose metabolism and antioxidant status in diabetic rat lenses. J Biosci 30(2):221–230

    Article  PubMed  CAS  Google Scholar 

  14. Lee EJ, Chen HY, Wu TS, Chen TY, Ayoub IA, Maynard KI (2002) Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague–Dawley rats. J Neurosci Res 68:636–645

    Article  PubMed  CAS  Google Scholar 

  15. Ali A, Ahmad FJ, Pillai KK, Vohora D (2004) Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy Behav 5:322–328

    Article  PubMed  Google Scholar 

  16. Lum G, Gambino SR (1974) A comparison of serum Vs heparinised plasma for routine chemistry tests. Am J Clin Pathol 61:108–113

    PubMed  CAS  Google Scholar 

  17. Caliborne A (1985) Catalase activity. In: Wakd G (ed) CRC hand book of methods for oxygen radical research. CRC, Boca Raton, pp 283–294

    Google Scholar 

  18. Svoboda P, Mosinger B (1981) Catecholamines and the brain microsomal Na, K-adenosinetriphosphatase—I. Protection against lipoperoxidative damage. Biochem Pharmacol 30:427–432

    Article  PubMed  CAS  Google Scholar 

  19. Jollow DJ, Mitchell JR, Zampagline N, Gillette JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzene as the hepatic metabolite. Pharmacology 11:151–169

    Article  PubMed  CAS  Google Scholar 

  20. Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity. Anal Biochem 184:193–199

    Article  PubMed  CAS  Google Scholar 

  21. Carlberg I, Mannerviek B (1975) Glutathione reductase levels in rat brain. J Biol Chem 250:5475–5480

    PubMed  CAS  Google Scholar 

  22. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  23. Nesto RW (2004) Correlation between cardiovascular disease and diabetes mellitus: current concepts. Am J Med 116:11–22

    Article  Google Scholar 

  24. Zorzano A, Palacín M, Marti L, García-Vicente S (2009) Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem 103(4):559–566

    Article  PubMed  CAS  Google Scholar 

  25. Esbak H, Enyedy EA, Kiss T, Yoshikawa Y, Sakurai H, Garribba E, Rehder D (2009) Amino acid-derivatised picolinato-oxidovanadium(IV) complexes: characterisation, speciation and ex vivo insulin-mimetic potential. J Inorg Biochem 103(4):590–600

    Article  PubMed  CAS  Google Scholar 

  26. Rehder D (2003) Biological and medical aspects of vanadium. Inorg Chem Commun 6(5):604–617

    Article  CAS  Google Scholar 

  27. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902

    Article  PubMed  CAS  Google Scholar 

  28. Rizk NN, Rafols JA, Dunbar JC (2006) Cerebral ischemia-induced apoptosis and necrosis in normal and diabetic rats: effects of insulin and C-peptide. Brain Res 1096:204–212

    Article  PubMed  CAS  Google Scholar 

  29. Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY (2005) The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/Akt activation. Brain Res 1052:1–9

    Article  PubMed  CAS  Google Scholar 

  30. Aragno M, Brignardello E, Tamagno E, Gatto V, Danni O, Boccuzzi G (1997) Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rats. J Endocrinol 155:233–240

    Article  PubMed  CAS  Google Scholar 

  31. Kowluru RA, Engerman RL, Kern TS (1999) Abnormalities of retinal metabolism in diabetes or experimental galactosemia. VI. Comparison of retinal and cerebral cortex metabolism, and effects of antioxidant therapy. Free Radic Biol Med 26:371–378

    Article  PubMed  CAS  Google Scholar 

  32. Coyle JT, Puttfarcken PO (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  33. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–338

    Article  PubMed  CAS  Google Scholar 

  34. Shivakumar BR, Kolluri SV, Ravindranath V (1995) Glutathione and protein thiol homeostasis in brain during reperfusion after cerebral ischemia. J Pharmacol Exp Ther 274:1167–1173

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Key New Drugs Innovation project from Ministry of Science and Technology (2009ZX09502-017), Program for New Century Excellent Talents in University (NCET-10-0273), Beijing Nova Program (2010B035), the project from Key Laboratory of Mental Health, Chinese Academy of Sciences, Young Scientist project from IPCAS (08CX043004), NNSF grant (30800301), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-254, KSCX2-EW-Q-18 and KSCX2-EW-J-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyou Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Li, P., Zhao, D. et al. Protection by Vanadium, a Contemporary Treatment Approach to Both Diabetes and Focal Cerebral Ischemia in Rats. Biol Trace Elem Res 145, 66–70 (2012). https://doi.org/10.1007/s12011-011-9168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9168-9

Keywords

Navigation