Skip to main content
Log in

Modulation of Exogenous Glutathione in Ultrastructure and Photosynthetic Performance Against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Greenhouse hydroponic experiments were conducted using Cd-sensitive (Dong 17) and tolerant (Weisuobuzhi) barley genotypes to evaluate genotypic differences in response of photosynthesis and ultrastructure to Cd toxicity in the presence of exogenous glutathione (GSH). Addition of 20 mg L−1 GSH in 5 μM Cd culture medium (Cd + GSH) significantly alleviated Cd-induced growth inhibition and reduced Cd concentration in leaves and roots especially in the sensitive genotype Dong 17. Exogenous GSH greatly ameliorated Cd-induced damages on leaf/root ultrastructure, e.g., compared with Cd alone treatment, chloroplasts in plants treated with Cd + GSH become better or in relatively normal shape with well-structured thylakoid membranes and parallel pattern of lamellae and unfolded more starch grains but less osmiophilic plastoglobuli; nuclei of root cells were better formed and chromatin distributed more uniformly in both genotypes, and number of plastids and mitochondria cristae in Dong 17 resumed to control level. The examination of photosynthetic performance revealed GSH dramatically increased net photosynthetic rate (P n), stomatal conductance (G s), and transpiration rate (T r) in the both genotypes and strongly stimulated Cd-induced decrease in the maximal photochemical efficiency (F v/F m) especially in the sensitive genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

CW:

Cell wall

E:

Endoplasmic reticulum

GL:

Granum lamellae

G s :

Stomatal conductance

GSH:

Glutathione

M:

Mitochondrion

N:

Nucleus

NL:

Nucleolus

Os:

Osmiophilic plastolobuli

P:

Plastid

PC:

Phytochelatin

P n :

Net photosynthetic rate

ROS:

Reactive oxygen species

SG:

Starch grain

SL:

Stroma lamellae

T r :

Transpiration rate

V:

Vacuole

References

  1. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  2. Chen F, Wu FB, Dong J, Vincze E, Zhang GP, Wang F, Huang Y, Wei K (2007) Cadmium translocation and accumulation in developing barley grains. Planta 227:223–232

    Article  PubMed  CAS  Google Scholar 

  3. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  4. McGrath SP, Lombi E, Zhao FJ (2001) What’s new about cadmium hyperaccumulation? New Phytol 149:2–3

    Article  Google Scholar 

  5. Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  6. Vadas TM, Ahner BA (2009) Extraction of lead and cadmium from soil by cysteine and glutathione. J Environ Qual 38:2245–2252

    Article  PubMed  CAS  Google Scholar 

  7. Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, photosynthetic protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  Google Scholar 

  8. Ferguson GP, Booth IR (1998) Importance of glutathione for growth and survival of Escherichia coli cells, detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 180:4314–4318

    PubMed  CAS  Google Scholar 

  9. Wu FB, Zhang GP, Dominy P (2003) Four barley genotypes respond differently to cadmium, lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  10. Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    PubMed  CAS  Google Scholar 

  11. Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  12. Xiang C, Werner B, Christensen E, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  PubMed  CAS  Google Scholar 

  13. Chen F, Wang F, Wu FB, Mao WH, Zhang GP, Zhou MX (2010) Modulation of exogenous glutathione on antioxidant defense system against Cd stress in two barley genotypes differing in Cd tolerance. Plant Physi and Biochem 48:663–672

    Article  CAS  Google Scholar 

  14. Chen F, Wang F, Zhang GP, Wu FB (2008) Identification of barley varieties tolerant to cadmium toxicity. Biol Trace Elem Res 121(2):171–179

    Article  PubMed  CAS  Google Scholar 

  15. Fang R (1991) Application of atomic absorption spectroscopy in sanitary test. Beijing University Press, Beijing, pp 148–158

    Google Scholar 

  16. Tang Q, Feng MG (1997) Practical statistics and its DPS statistical software package. China Agriculture, Beijing

    Google Scholar 

  17. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  PubMed  CAS  Google Scholar 

  18. Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  PubMed  CAS  Google Scholar 

  19. Blaylock MJ, Salt DE, Dusjemkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin L (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci & Technol 31:860–865

    Article  Google Scholar 

  20. Vadas TM, Ahner BA (2009) Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut 157:2558–2563. doi:10.1016/j.envpol.2009.02.036

    Article  PubMed  CAS  Google Scholar 

  21. Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activities of cadmium-treated plants. Physiol Plantarum 48:365–370

    Article  CAS  Google Scholar 

  22. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. J Ann Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  23. Rauser WE, Samarakoon AB (1980) Vein loading in seedlings of Phaseolus vulgaris exposed to excess cobalt, nickel and zinc. Plant Physiol 65:578–583

    Article  PubMed  CAS  Google Scholar 

  24. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  25. Kosower NS, Kosower EM (1978) The glutathione status of cells. Int Rev Cytol -A Survey of Cell Biology 54:109–160

    CAS  Google Scholar 

  26. Somashekaraiah BV, Padmaja K, Prasad AK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris), involvement of lipid peroxides in chlorophyll degradation. Physiol Plantarum 85:85–89

    Article  CAS  Google Scholar 

  27. Sun R, Zhou Q, Sun F, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    Article  CAS  Google Scholar 

  28. Kang YJ, Enger MD (1987) Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells. Cell Biol Toxicol 3:347–360

    Article  PubMed  CAS  Google Scholar 

  29. Liu D, Kottke I (2004) Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosci 29:329–335

    Article  PubMed  Google Scholar 

  30. Díaz-Cruz MS, Mendieta J, Tauler R, Esteban M (1997) Cadmium-binding properties of glutathione: a chemometrical analysis of voltammetric data. J Inorganic Biochem 66:29–36

    Article  Google Scholar 

  31. Mah V, Jalilehvand F (2009) Cadmium(II) complex formation with glutathione. J Biol Inorg Chem 15:441–458. doi:10.1007/s00775-009-0616-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (30571097, 31071365) and the Special Foundation for the Author of National Excellent Doctoral Dissertation of PR China (200556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feibo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Chen, F., Cai, Y. et al. Modulation of Exogenous Glutathione in Ultrastructure and Photosynthetic Performance Against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance. Biol Trace Elem Res 144, 1275–1288 (2011). https://doi.org/10.1007/s12011-011-9121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9121-y

Keywords

Navigation