Skip to main content

Advertisement

Log in

Chromium III Histidinate Exposure Modulates Gene Expression in HaCaT Human Keratinocytes Exposed to Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

While the toxicity of hexavalent chromium is well established, trivalent chromium is an essential nutrient involved in insulin and glucose homeostasis. To study the antioxidant effects of Cr(III)His, cDNA arrays were used to investigate the modulation of gene expression by trivalent chromium histidinate (Cr(III)His) in HaCaT human keratinocytes submitted to hydrogen peroxide (H2O2). Array was composed by a set of 81 expressed sequences tags (ESTs) essentially represented by antioxidant and DNA repair genes. HaCaT were preincubated for 24 h with 50 μM Cr(III)His and were treated with 50 μM H2O2. Total RNAs were isolated immediately or 6 h after the stress. In Cr(III)His preincubated cells, transcripts related to antioxidant family were upregulated (glutathione synthetase, heme oxygenase 2, peroxiredoxin 4). In Cr(III)His preincubated cells and exposed to H2O2, increased expressions of polymerase delta 2 and antioxidant transcripts were observed. Biochemical methods performed in parallel to measure oxidative stress in cells showed that Cr(III)His supplementation before H2O2 stress protected HaCaT from thiol groups decrease and thiobarbituric acid reactive substances increase. In summary, these results give evidence of antioxidant gene expression and antioxidant protection in HaCaT preincubated with Cr(III)His and help to explain the lack of toxicity reported for Cr(III)His.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

8-oxodGuo:

8-Oxo-7-8-dihydro-2′-deoxyguanosine

ACTB:

Actin, beta

ANOVA:

Analysis of variance

Cr:

Chromium

Cr(III):

Trivalent chromium

Cr(III)His:

Trivalent chromium histidinate

Cr(VI):

Hexavalent chromium

DMSO:

Dimethylsulfoxide

DTNB:

5,5′-Dithio-Bis (2-nitrobenzoic acid)

ECM:

Extracellular matrix

ESTs:

Expressed sequence tags

GADD45A:

Growth arrest and DNA-damage-inducible alpha

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GCLM:

Glutamate-cysteine ligase, modifier subunit

GPX1:

Glutathione peroxidase 1

GSH:

Glutathione

GSR:

Glutathione reductase

GSS:

Glutathione synthetase

GST:

Glutathione S-transferase

H2O2 :

Hydrogen peroxide

HMOX2:

Heme oxygenase 2

IKBIA:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

MMP2:

Matrix metallopeptidase 2

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAC:

N-acetyl cysteine

NER:

Nucleotide excision repair

NFKB1:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

NHEJ:

Non-homologous end-joining

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PLA2G5:

Phospholipase A2, group V

POLD2:

Polymerase delta 2

PRDX4:

Peroxiredoxin 4

ROS:

Reactive oxygen species

RPL32:

Ribosomal protein L32

SE:

Standard error

-SH:

Thiol groups

SHC1:

Src homology 2 domain containing transforming protein 1

SOD1:

Superoxide dismutase 1

TBARS:

Thiobarbituric acid reactive substances

TXN:

Thioredoxin

XPC:

Xeroderma pigmentosum C

References

  1. Anderson RA (1997) Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr 16:404–410

    CAS  PubMed  Google Scholar 

  2. Chromium ARA (1998) Glucose intolerance and diabetes. J Am Coll Nutr 17:548–555

    Google Scholar 

  3. Sugiyama M, Tsuzuki K, Ogura R (1991) Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese hamster V-79 cells treated with sodium chromate(VI). J Biol Chem 266:3383–3386

    CAS  PubMed  Google Scholar 

  4. Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, Cefalu WT (2006) Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care 29:1826–1832

    Article  CAS  PubMed  Google Scholar 

  5. Anton SD, Morrison CD, Cefalu WT, Martin CK, Coulon S, Geiselman P, Han H, White CL, Williamson DA (2008) Effects of chromium picolinate on food intake and satiety. Diabetes Technol Ther 10:405–412

    Article  CAS  PubMed  Google Scholar 

  6. De Flora S, Camoirano A, Bagnasco M, Bennicelli C, Corbett GE, Kerger BD (1997) Estimates of the chromium(VI) reducing capacity in human body compartments as a mechanism for attenuating its potential toxicity and carcinogenicity. Carcinogenesis 18:531–537

    Article  PubMed  Google Scholar 

  7. Shi X, Dalal NS, Kasprzak KS (1993) Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III). Arch Biochem Biophys 302:294–299

    Article  CAS  PubMed  Google Scholar 

  8. Voitkun V, Zhitkovich A, Costa M (1998) Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26:2024–2030

    Article  CAS  PubMed  Google Scholar 

  9. Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A (2001) Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 20:212–218

    CAS  PubMed  Google Scholar 

  10. De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds. A review. Mutat Res 238:99–172

    PubMed  Google Scholar 

  11. Cheng HH, Lai MH, Hou WC, Huang CL (2004) Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J Agric Food Chem 52:1385–1389

    Article  CAS  PubMed  Google Scholar 

  12. Hininger I, Benaraba R, Osman M, Faure H, Marie Roussel A, Anderson RA (2007) Safety of trivalent chromium complexes: no evidence for DNA damage in human HaCaT keratinocytes. Free Radic Biol Med 42:1759–1765

    Article  CAS  PubMed  Google Scholar 

  13. Cheng RY, Alvord WG, Powell D, Kasprzak KS, Anderson LM (2002) Microarray analysis of altered gene expression in the TM4 Sertoli-like cell line exposed to chromium(III) chloride. Reprod Toxicol 16:223–236

    Article  CAS  PubMed  Google Scholar 

  14. Hazane F, Valenti K, Sauvaigo S, Peinnequin A, Mouret C, Favier A, Beani JC (2005) Ageing effects on the expression of cell defence genes after UVA irradiation in human male cutaneous fibroblasts using cDNA arrays. J Photochem Photobiol B 79:171–190

    Article  CAS  PubMed  Google Scholar 

  15. Ermolli M, Menne C, Pozzi G, Serra MA, Clerici LA (2001) Nickel, cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes. Toxicology 159:23–31

    Article  CAS  PubMed  Google Scholar 

  16. Horowitz SB, Finley BL (1994) Setting health-protective soil concentrations for dermal contact allergens: a proposed methodology. Regul Toxicol Pharmacol 19:31–47

    Article  CAS  PubMed  Google Scholar 

  17. BN ARA, Polansky MM, Gautschi K (1996) Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. Journal Trace Elements Exp Med 9:11–25

    Article  Google Scholar 

  18. Anderson RA, Polansky MM, Bryden NA (2004) Stability and absorption of chromium and absorption of chromium histidinate complexes by humans. Biol Trace Elem Res 101:211–218

    Article  CAS  PubMed  Google Scholar 

  19. Gusnanto A, Calza S, Pawitan Y (2007) Identification of differentially expressed genes and false discovery rate in microarray studies. Curr Opin Lipidol 18:187–193

    Article  CAS  PubMed  Google Scholar 

  20. Lafond PF (1995) Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxidation. In Analysis of Free Radical in Biological Systems. Birkhauser Verlag, Switzerland 237–248

  21. Richard MJ, Guiraud P, Meo J, Favier A (1992) High-performance liquid chromatographic separation of malondialdehyde-thiobarbituric acid adduct in biological materials (plasma and human cells) using a commercially available reagent. J Chromatogr 577:9–18

    Article  CAS  PubMed  Google Scholar 

  22. Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Aspects Med 26:340–352

    Article  CAS  PubMed  Google Scholar 

  23. Forman HJ, Dickinson DA (2003) Oxidative signaling and glutathione synthesis. Biofactors 17:1–12

    Article  CAS  PubMed  Google Scholar 

  24. Lee KM, Lee JG, Seo EY, Lee WH, Nam YH, Yang JM, Kee SH, Seo YJ, Park JK, Kim CD, Lee JH (2005) Analysis of genes responding to ultraviolet B irradiation of HaCaT keratinocytes using a cDNA microarray. Br J Dermatol 152:52–59

    Article  CAS  PubMed  Google Scholar 

  25. Sesto A, Navarro M, Burslem F, Jorcano JL (2002) Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc Natl Acad Sci U S A 99:2965–2970

    Article  CAS  PubMed  Google Scholar 

  26. Kahari VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213

    Article  CAS  PubMed  Google Scholar 

  27. Toy LW (2005) Matrix metalloproteinases: their function in tissue repair. J Wound Care 14:20–22

    CAS  PubMed  Google Scholar 

  28. Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276:18665–18672

    Article  CAS  PubMed  Google Scholar 

  29. Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH (2000) The oxidative DNA lesion 8, 5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275:355–362

    Google Scholar 

  30. Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T (2000) Removal of oxygen free-radical-induced 5′, 8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci U S A 97:3832–3837

    Article  CAS  PubMed  Google Scholar 

  31. D'Errico M, Parlanti E, Teson M, de Jesus BM, Degan P, Calcagnile A, Jaruga P, Bjoras M, Crescenzi M, Pedrini AM, Egly JM, Zambruno G, Stefanini M, Dizdaroglu M, Dogliotti E (2006) New functions of XPC in the protection of human skin cells from oxidative damage. Embo J 25:4305–4315

    Article  PubMed  Google Scholar 

  32. Jin DY, Chae HZ, Rhee SG, Jeang KT (1997) Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 272:30952–30961

    Article  CAS  PubMed  Google Scholar 

  33. Anderson MT, Staal FJ, Gitler C, Herzenberg LA, Herzenberg LA (1994) Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc Natl Acad Sci U S A 91:11527–11531

    Article  CAS  PubMed  Google Scholar 

  34. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    CAS  PubMed  Google Scholar 

  35. Isoir M, Buard V, Gasser P, Voisin P, Lati E, Benderitter M (2006) Human keratinocyte radiosensitivity is linked to redox modulation. J Dermatol Sci 41:55–65

    Article  CAS  PubMed  Google Scholar 

  36. Pandolfi S, Bonafe M, Di Tella L, Tiberi L, Salvioli S, Monti D, Sorbi S, Franceschi C (2005) p66(shc) is highly expressed in fibroblasts from centenarians. Mech Ageing Dev 126:839–844

    Article  CAS  PubMed  Google Scholar 

  37. Purdom S, Chen QM (2003) p66(Shc): at the crossroad of oxidative stress and the genetics of aging. Trends Mol Med 9:206–210

    Article  CAS  PubMed  Google Scholar 

  38. Yu BP, Chung HY (2006) Adaptive mechanisms to oxidative stress during aging. Mech Ageing Dev 127:436–443

    CAS  PubMed  Google Scholar 

  39. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  CAS  PubMed  Google Scholar 

  40. Migliaccio E, Giorgio M, Pelicci PG (2006) Apoptosis and aging: role of p66Shc redox protein. Antioxid Redox Signal 8:600–608

    Article  CAS  PubMed  Google Scholar 

  41. Stevenson MA, Pollock SS, Coleman CN, Calderwood SK (1994) X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res 54:12–15

    CAS  PubMed  Google Scholar 

  42. Zhao L, Chang LS (1997) The human POLD1 gene. Identification of an upstream activator sequence, activation by Sp1 and Sp3, and cell cycle regulation. J Biol Chem 272:4869–4882

    Article  CAS  PubMed  Google Scholar 

  43. Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25:143–147

    Article  CAS  PubMed  Google Scholar 

  44. Snow ET, Xu LS (1991) Chromium(III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro. Biochemistry 30:11238–11245

    Article  CAS  PubMed  Google Scholar 

  45. O'Brien TJ, Brooks BR, Patierno SR (2005) Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells. Mol Cell Biochem 279:85–95

    Article  PubMed  Google Scholar 

  46. Snow ET (1994) Effects of chromium on DNA replication in vitro. Environ Health Perspect 102(Suppl 3):41–44

    Article  CAS  PubMed  Google Scholar 

  47. Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol 24:66–73

    Article  CAS  PubMed  Google Scholar 

  48. Bencheikh-Latmani R, Obraztsova A, Mackey MR, Ellisman MH, Tebo BM (2007) Toxicity of Cr(lll) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ Sci Technol 41:214–220

    Article  CAS  PubMed  Google Scholar 

  49. Roling JA, Baldwin WS (2006) Alterations in hepatic gene expression by trivalent chromium in Fundulus heteroclitus. Mar Environ Res 62(Suppl):S122–S127

    Article  CAS  PubMed  Google Scholar 

  50. Tezuka M, Momiyama K, Edano T, Okada S (1991) Protective effect of chromium(III) on acute lethal toxicity of carbon tetrachloride in rats and mice. J Inorg Biochem 42:1–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was part of a US Department of Agriculture funded study entitled “Insulin potentiating compounds and antioxidant nutrients in the prevention and alleviation of glucose intolerance and diabetes” and the International Agreement between laboratories from Joseph Fourier University, Grenoble, France and the Beltsville Human Nutrition Research Center entitled “Naturally Occurring Insulin Enhancing Factors”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Hininger-Favier.

Additional information

Chromium–histidine complexes as nutrient supplements, serial no. 09/414,645, is a patent of the USDA and R.A. Anderson is one of the inventors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazane-Puch, F., Benaraba, R., Valenti, K. et al. Chromium III Histidinate Exposure Modulates Gene Expression in HaCaT Human Keratinocytes Exposed to Oxidative Stress. Biol Trace Elem Res 137, 23–39 (2010). https://doi.org/10.1007/s12011-009-8557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8557-9

Keywords

Navigation