Skip to main content
Log in

Binding of chimeric metal-binding green fluorescent protein to lipid monolayer

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Membrane-based bioanalytical devices for metal determination using green fluorescent protein as the sensor molecule may be a useful future biomimetic material. However, in order to develop such a device, it is necessary first to understand the interaction of the protein with lipid membranes. Thus we have investigated the interaction between chimeric cadmium-binding green fluorescent proteins (CdBPGFPs) and lipid monolayers, using a film-balance technique complemented with epifluorescence microscopy. The binding avidity was monitored from the surface pressure vs. area isotherms or from the measured increase in the lateral pressure upon injection of the chimeric CdBPGFPs beneath the lipid monolayer. Increased fluidization as well as expansion of the surface area were shown to depend on the concentration of the CdBPGFPs. The kinetics of the protein-induced increase in lateral pressure was found to be biphasic. The chimeric CdBPGFPs possessed high affinity to the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer with a dissociation constant of K d=10−8M. Epifluorescence measurements showed that this affinity is due to the presence of the Cd-binding peptide, which caused the GFP to incorporate preferentially to the liquid phase and defect part of the rigid domain at low interfacial pressure. At high compression, the Cd-binding peptide could neither incorporate nor remain in the lipid core. However, specific orientation of the chimeric CdBPGFPs underneath the air–water interface was achieved, even under high surface pressure, when the proteins were applied to the metal-chelating lipid-containing surfaces. This specific binding could be controlled reversibly by the addition of metal ions or metal chelator. The reversible binding of the chimeric CdBPGFPs to metal-chelating lipids provided a potential approach for immobilization, orientation and lateral organization of a protein at the membrane interface. Furthermore, the feasibility of applying the chelator lipids for the codetermination of metal ions with specific ligands was also revealed. Our finding clearly demonstrates that a strong interaction, particularly with fluid lipid domains, could potentially be used for sensor development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–G
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

GFP :

green fluorescent protein

CdBPGFPs :

cadmium-binding green fluorescent protein

DPPC :

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

AAS :

atomic absorption spectrometry

Cd 2+ :

cadmium (II)

Zn 2+ :

zinc (II)

Cu 2+ :

copper (II)

Ni 2+ :

nickel (II)

E. coli :

Escherichia coli

NTA-DOGS :

1,2-dioleoyl-sn-glycero-3-(N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl)

His6GFP :

hexahistidine green fluorescent protein

CdBP4GFP :

four-repeat cadmium-binding peptide green fluorescent protein

His6CdBP4GFP :

hexahistidine four-repeat cadmium-binding peptide green fluorescent protein

IMAC :

immobilized-metal-affinity chromatography

PBS :

phosphate-buffered saline

mN/m :

millinewton per metre

le :

liquid expanded

lc :

liquid condensed

PE :

phosphatidyl ethanolamine

PI :

phosphatidyl inositol

NTA :

nitrilotriacetic acid

EDTA :

ethylenediamine tetraacetic acid

RESA :

ring-infected erythrocyte surface antigen

CdBP :

cadmium-binding peptide

References

  • Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800

    Article  CAS  PubMed  Google Scholar 

  • Bevan DR, Worrel WJ, Barfield KD (1983) The interaction of Ca2+, Mg2+, Zn2+, Cd2+, and Hg2+ with phospholipid bilayer vesicles. Colloids Surfaces 6:365–376

    Article  CAS  Google Scholar 

  • Bontidean I, Berggren C, Johansson G, Csoregi E, Mattiasson B, Lloyd JR, Jakeman KJ, Brown NL (1998) Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal Chem 70:4162–4169

    Google Scholar 

  • Bourdos N, Kollmer F, Benninghoven A, Ross M, Sieber M, Galla HJ (2000) Analysis of lung-surfactant model systems with time-of-flight secondary ion mass spectrometry. Biophys J 79:357–369

    CAS  PubMed  Google Scholar 

  • Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ (2001) Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc 123:7831–7841

    Article  CAS  PubMed  Google Scholar 

  • Celia H, Wilson-Kubalek E, Milligan RA, Teyton L (1999) Structure and function of a membrane-bound murine MHC class I molecule. Proc Natl Acad Sci USA 96:5634–5639

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Nam YS, Park SJ, Lee WH, Kim D, Fujihira M (2001) Rectified photocurrent of molecular photodiode consisting of cytochrome c/GFP hetero thin films. Biosensors Bioelectronics 16:819–825

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181

    Article  CAS  PubMed  Google Scholar 

  • Da Silva E, Foley M, Dluzewski AR, Murray LJ, Anders RF, Tilley L (1994) The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Mol Biochem Parasitol 66:59–69

    Article  PubMed  Google Scholar 

  • Deleers M, Servais JP, Wulfert E (1986) Neurotoxic cations induce membrane rigidification and membrane fusion at micromolar concentrations. Biochim Biophys Acta 855:271–276

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Schmitt L, Tampe R (1995) Molecular organization of histidine-tagged biomolecules at self-assembled lipid interfaces using a novel class of chelator lipids. Proc Natl Acad Sci USA 92:9014–9018

    CAS  PubMed  Google Scholar 

  • Dorn IT, Pawlitschko K, Pettinger SC, Tampe R (1998) Orientation and two-dimensional organization of proteins at chelator lipid interfaces. Biol Chem 379:1151–1159

    CAS  PubMed  Google Scholar 

  • Dufourcq J, Faucon JF (1977) Intrinsic fluorescence study of lipid-protein interactions in membrane models. Binding of melittin, an amphipathic peptide, to phospholipid vesicles. Biochim Biophys Acta 467:1–11

    Article  CAS  PubMed  Google Scholar 

  • Falchuk KH, Hilt KL, Vallee BL (1988) Determination of zinc in biological samples by atomic absorption spectrometry. Methods Enzymol 158:422–434

    CAS  PubMed  Google Scholar 

  • Gardner MJ, Tettelin H, Carucci DJ, Cummings LM, Aravind L, Koonin EV, Shallom S, Mason T, Yu K, Fujii C, Pederson J, Shen K, Jing J, Aston C, Lai Z, Schwartz DC, Pertea M, Salzberg S, Zhou L, Sutton GG, Clayton R, White O, Smith HO, Fraser CM, Hoffman SL, et al. (1998) Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Girault L, Boudou A, Dufourc EJ (1998) 113Cd-, 31P-NMR and fluorescence polarization studies of cadmium(II) interactions with phospholipids in model membranes. Biochim Biophys Acta 1414:140–154

    Article  CAS  PubMed  Google Scholar 

  • Grandbois M, Dufourcq J, Salesse C (1996) Study of the synergistic action of phospholipase A2 and melittin in the hydrolysis of phospholipid monolayers. Thin Solid Films 284–285:743–747

    Google Scholar 

  • Isarankura Na Ayudhya C (2000) Engineering of chimeric protein for binding to metal ions. PhD Thesis, Mahidol University, Bangkok, Thailand

  • Javanbakht M, Shabani-Kia A, Darvich MR, Ganjali MR, Shansipur M (2000) Cadmium(II)-selective membrane electrode based on a synthesized tetrol compound. Anal Chim Acta 408:75–81

    Article  CAS  Google Scholar 

  • Kahle C, Koch PJ, Durr W, Kastowsky M, Bradaczek H (1996) Active penetration of charged peptides into monomolecular films of deep rough mutant lipopolysaccharide. Thin Solid Films 284–285:802–804

    Google Scholar 

  • Keusgen M (2002) Biosensors: new approaches in drug discovery. Naturwissenschaften 89:433–444

    Article  Google Scholar 

  • Klee B, John E, Jahnig F (1992) A biosensor based on the membrane protein lactose permease. Sensors Actuators B 6:376–379

    Article  Google Scholar 

  • Klee B, Duveneck GL, Oroszlan P, Ehrat M, Widmer HM (1995) A model system for the development of an optical biosensor based on lipid membranes and membrane-bound receptors. Sensors Actuators B 29:307–311

    Article  Google Scholar 

  • Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (chlorophyta). J Phycol 33:596–601

    CAS  Google Scholar 

  • Kostov Y, Albano CR, Rao G (2000) All solid-state GFP sensor. Biotechnol Bioeng 70:473–477

    Article  CAS  PubMed  Google Scholar 

  • Kubalek EMW, Brown RE, Celia H, Milligan RA (1998) Lipid nanotubes as substrates for helical crystallization of macromolecules. Proc Natl Acad Sci USA 95:8040–8045

    Article  PubMed  Google Scholar 

  • Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosensors Bioelectronics 15:211–219

    Article  CAS  PubMed  Google Scholar 

  • Lis LJ, Lis WT, Parsegian VA, Rand RP (1981) Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry 20:1771–1777

    CAS  PubMed  Google Scholar 

  • Lu YJ, He Y, Sui SF (2002) Inositol hexakisphosphate (InsP6) can weaken the Ca(2+)-dependent membrane binding of C2AB domain of synaptotagmin I. FEBS Lett 527:22–26

    Article  CAS  PubMed  Google Scholar 

  • MacRitchie F (1986) Spread monolayers of proteins. Adv Colloid Interface Sci 25:341–385

    Article  CAS  PubMed  Google Scholar 

  • Maman N, Dhami S, Phillips D, Brault D (1999) Kinetic and equilibrium studies of incorporation of di-sulfonated aluminum phthalocyanine into unilamellar vesicles. Biochim Biophys Acta 1420:168–178

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta 1327:119–130.

    CAS  PubMed  Google Scholar 

  • Mejare M, Ljung S, Bulow L (1998) Selection of cadmium-specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11:489–494

    Article  CAS  PubMed  Google Scholar 

  • Norde W (1986) Adsorption of proteins from solution at the solid–liquid interface. Adv Colloid Interface Sci 25:267–340

    CAS  PubMed  Google Scholar 

  • Pignataro B, Steinem C, Galla HJ, Fuchs H, Janshoff A (2000) Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophys J 78:487–498

    CAS  PubMed  Google Scholar 

  • Prachayasittikul V, Isarankura Na Ayudhya C, Mejare M, Bulow L (2000) Construction of a chimeric histidine6-green fluorescent protein: role of metal on fluorescent characteristic. Thammasat Int J Sc Tech 5:61–68

    Google Scholar 

  • Prachayasittikul V, Isarankura Na Ayudhya C, Bulow L (2001) Lighting E. coli cells as biological sensors for Cd2+. Biotechnol Lett 23:1285–1291

    Article  CAS  Google Scholar 

  • Rishpon J (2002) Electrochemical biosensors for environmental monitoring. Rev Environ Health 17:219–247

    CAS  PubMed  Google Scholar 

  • Rogers KR, Valdes JJ, Eldefrawi ME (1989) Acetylcholine receptor fiber-optic evanescent fluorosensor. Anal Biochem 182:353-359

    CAS  PubMed  Google Scholar 

  • Savory J, Herman MM (1999) Advances in instrumental methods for the measurement and speciation of trace metals. Ann Clin Lab Sci 29:118–126

    CAS  PubMed  Google Scholar 

  • Schmidt CF, Zimmermann RM, Gaub HE (1990) Multilayer adsorption of lysozyme on a hydrophobic substrate. Biophys J 57:577–588

    CAS  PubMed  Google Scholar 

  • Shank-Retzlaff ML, Raner GM, Coon MJ, Sligar SG (1998) Membrane topology of cytochrome P450 2B4 in Langmuir-Blodgett monolayers. Arch Biochem Biophys 359:82–88

    Article  CAS  PubMed  Google Scholar 

  • Sorensen EM, Acosta D, Nealon DG (1985) Effects of cadmium and calcium on the fluidity of plasma membranes. Toxicol Lett 25:319–326

    Article  CAS  PubMed  Google Scholar 

  • Tacnet F, Ripoche P, Roux M, Neumann JM (1991) 31P-NMR study of pig intestinal brush-border membrane structure: effect of zinc and cadmium ions. Eur Biophys J 19:317–322

    CAS  PubMed  Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple-sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Vercoutere W, Akeson M (2002) Biosensors for DNA sequence detection. Curr Opin Chem Biol 6:816–822

    Article  CAS  PubMed  Google Scholar 

  • Wegener J, Janshoff A, Galla HJ (1999) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28:26–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung (Federal Ministry for Economic Cooperation and Development; BMZ) (grant no.GA233/19–1,2). This project was also supported by a grant from the annual budget of Mahidol University for collaborative research between Germany and Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Virapong Prachayasittikul or Hans-Joachim Galla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isarankura Na Ayudhya, C., Prachayasittikul, V. & Galla, HJ. Binding of chimeric metal-binding green fluorescent protein to lipid monolayer. Eur Biophys J 33, 522–534 (2004). https://doi.org/10.1007/s00249-004-0393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0393-4

Keywords

Navigation