Skip to main content
Log in

Biochemical regulatory processes in the control of oxidants and antioxidants production in the brain of rats with iron and copper chronic overloads

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Iron [Fe(II)] and copper [Cu(II)] overloads in rat brain are associated with oxidative stress and damage. The purpose of this research is to study whether brain antioxidant enzymes are involved in the control of intracellular redox homeostasis in the brain of rats male Sprague–Dawley rats (80–90 g) that received drinking water supplemented with either 1.0 g/L of ferrous chloride (n = 24) or 0.5 g/L cupric sulfate (n = 24) for 42 days. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione transferase (GT) activities in brain were determined by spectrophotometric methods and NO production by the content of nitrite concentration in the organ. Chronic treatment with Fe(II) and Cu(II) led to a significant decrease of nitrite content and SOD activity in brain. Activity of NADPH oxidase increased with Cu(II) treatment. Concerning Fe(II), catalase and GT activities increased in brain after 28 and 4 days of treatment, respectively. In the case of Cu(II), catalase activity decreased whereas GT activity increased after 2 and 14 days, respectively. The regulation of redox homeostasis in brain involves changes of the activity of these enzymes to control the steady state of oxidant species related to redox signaling pathways upon Cu and Fe overload. NO may serve to detoxify cells from superoxide anion and hydrogen peroxide with the concomitant formation of peroxynitrite. However, the latest is a powerful oxidant which leads to oxidative modifications of biomolecules. These results suggest a common pathway to oxidative stress and damage in brain for Cu(II) and Fe(II).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP7A:

ATPase copper exporter protein

BBB:

Blood–brain barrier

CDNB:

1 Chlorine-2,4 dinitro benzene

C50 :

Metal content necessary to produce the half of the maximal effect

Ctr1:

Copper transporter receptor 1

Cu:

Copper

Cu(II):

Divalent copper ion

Fe:

Iron

Fe(II):

Divalent iron ion

GPx:

Glutathione peroxidase

GS-DNB:

Glutathione-dinitrobenzene

GSH:

Glutathione

GT:

Glutathione transferase

H2O2 :

Hydrogen peroxide

HO :

Hydroxyl radical

NADPH:

Nicotinamide adenine dinucleotide phosphate oxidase

NO :

Nitroxyl anion

NO+ :

Nitrosonium cation

NO:

Nitric oxide

N2O3 :

Dinitrogen trioxide

O2 :

Oxygen

ONNO :

Peroxynitrite

O2 :

Superoxide anion

1O2 :

Singlet oxygen

RNS:

Reactive nitrogen species

ROOH:

Organic hydroperoxides

ROO. :

Hydroperoxyl radical

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

SOD:

Superoxide dismutase

t 1/2 :

Time necessary to produce the half of the maximal effect

Tf:

Transferrin

TfR:

Transferrin receptor

References

  1. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicol 283:65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  Google Scholar 

  2. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316–523. https://doi.org/10.1155/2013/316523

    Article  CAS  Google Scholar 

  3. Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella A, Butterfield D (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233:145–162. https://doi.org/10.1016/j.jns.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  4. Gutteridge JMC, Halliwell B (2018) Mini-review: oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 502(2):183–186. https://doi.org/10.1016/j.bbrc.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  5. Boveris A, Repetto MG, Bustamante J, Boveris AD, Valdez L (2008) The concept of oxidative stress in pathology. In: Alvarez S, Evelson P, Boveris A (eds) Free Radical Pathophysiology. Research Signpost, Kerala

  6. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S-38S. https://doi.org/10.1016/0002-9343(91)90281-2

    Article  CAS  PubMed  Google Scholar 

  7. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sies H (2016) The concept of oxidative stress after 30 years. In: Gelpi RJ, Boveris A, Poderoso JJ (eds) Biochemistry of Oxidative Stress. Springer Internat, Publish, Switzerland. https://doi.org/10.1007/978-3-319-45865-6_1

  9. Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro A, Cuzzocrea S, Calabrese E, Calabrese V (2014) Osteoporosis and Alzheimer pathology: role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol 5:120. https://doi.org/10.3389/fphar.2014.00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811. https://doi.org/10.1089/ars.2009.3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calabrese V, Mancuso C, Cornelius C, Calafato M, Ventimiglia B, Butterfield D, Dinkova-Kostova AT, Rizzarelli E (2008) Reactive nitrogen species and cellular stress tolerance in aging and neurodegeneration: Role of vitagenes. In: Alvarez S, Evelson P, Boveris A (eds) Free Radical Pathophysiology. Research Signpost, Kerala

  12. Sies H (2007) Biological redox systems and oxidative stress. Cell Mol Life Sci 64:2181–2188. https://doi.org/10.1007/s00018-007-7230-8

    Article  CAS  PubMed  Google Scholar 

  13. Boveris A, Musacco Sebio R, Ferrarotti N, Saporito Magriñá C, Torti H, Massot F, Repetto MG (2012) The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver. J Inorg Biochem 116:63–69. https://doi.org/10.1016/j.jinorgbio.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  14. Musacco-Sebio R, Ferrarotti N, Saporito- Magriñá C, Semprine J, Fuda J, Torti H, Boveris A, Repetto MG (2014) Oxidative damage to rat brain in iron and copper overloads. Metallomics 6:1410–1416. https://doi.org/10.1039/c3mt00378g

    Article  CAS  PubMed  Google Scholar 

  15. Musacco-Sebio R, Saporito-Magriñá C, Semprine J, Torti H, Ferrarotti N, Castro-Parodi M, Damiano A, Boveris A, Repetto MG (2014) Rat liver antioxidant response to iron and copper overloads. J Inorg Biochem 137:94–100. https://doi.org/10.1016/j.jinorgbio.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  16. Semprine J, Ferrarotti N, Musacco Sebio R, Saporito Magriñá C, Fuda J, Torti H, Castro Parodi M, Damiano A, Boveris A, Repetto MG (2014) Brain antioxidant responses to acute iron and copper intoxications in rats. Metallomics 6:2083–2089. https://doi.org/10.1039/c4mt00159a

    Article  CAS  PubMed  Google Scholar 

  17. Musacco-Sebio R, Ferrarotti N, Saporito-Magriñá C, Fuda J, Torti H, Lairión F, Boveris A, Repetto MG (2019) Redox dyshomeostasis in the experimental chronic hepatic overloads with iron or copper. J Inorg Biochem 191:119–125. https://doi.org/10.1016/j.jinorgbio.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  18. Musacco-Sebio R, Ferrarotti N, Lairion F, Saporito-Magriñá C, Fuda J, Torti H, Boveris A, Repetto MG (2019) Brain oxidative stress in rat with chronic iron and copper overload. J Inorg Biochem 199:110799. https://doi.org/10.1016/j.jinorgbio.2019.110799

    Article  CAS  Google Scholar 

  19. Wiegand HL, Orths CT, Kerpen K, Lutze HV, Schmidt TC (2017) Investigation of the iron-peroxo complex in the fenton reaction: kinetic indication, decay kinetics, and hydroxyl radical yields. Environ Sci Technol 51:14321–14329. https://doi.org/10.1021/acs.est.7b03706

    Article  CAS  PubMed  Google Scholar 

  20. Lairion F, Saporito-Magriñá C, Musacco-Sebio R, Fuda J, Torti H, Repetto MG (2021) Nitric oxide, chronic iron and copper overloads and regulation of redox homeostasis in rat liver. J Biol Inorg Chem. https://doi.org/10.1007/s00775-021-01908-1

    Article  PubMed  Google Scholar 

  21. Freitas Ferreira MC, Zucki F, Duarte J, Godoy Iano F, Farias Ximenes V, Rabelo Buzalaf M, Cardoso de Oliveira R (2017) Influence of iron on modulation of the antioxidant system in rat brains exposed to lead. Environ Toxicol 32:813–822. https://doi.org/10.1002/tox.22281

    Article  CAS  Google Scholar 

  22. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson`s Disease. Lancet 369:397–408. https://doi.org/10.1016/S0140-6736(07)60196-2

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Castro KI, Hevia-Urrutia FJ, Sturniolo G (2015) Wilson’s disease: a review of what we have learned. World J Hepatol 7:2859–2870. https://doi.org/10.4254/wjh.v7.i29.2859

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4(6):624–630

    PubMed  PubMed Central  Google Scholar 

  25. AVMA Guidelines for the Euthanasia of Animals (2013). 2:38

  26. Skoog D, West D, Holler F (2014) Fundamentos de Química Analítica. McGraw-Hill, México

    Google Scholar 

  27. González Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100. https://doi.org/10.1016/0891-5849(91)90002-k

    Article  PubMed  Google Scholar 

  28. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–627. https://doi.org/10.1042/bj1280617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding AH, Nathan CF, Stuehr DJ (1998) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412. https://doi.org/10.1167/iovs.15-16864

    Article  CAS  Google Scholar 

  30. Wei Y, Sowers J, Nistala R, Gong H, Uptergrove G, Clark S, Morris M, Szary N, Manrique C, Stump C (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281:35137–35146. https://doi.org/10.1074/jbc.m601320200

    Article  CAS  PubMed  Google Scholar 

  31. McCord J, Fridovich I (1969) Superoxide dismutase. an enzymatic function for erythrocuprein hemocuprein. J Biol Chem 244:049–6055

    Google Scholar 

  32. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Meth Enzymol 10:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  Google Scholar 

  34. Chance B (1954) Determination of Catalase Activity. In: Glick J (ed) Methods of biochemical analysis. Interscience Publishers, New York

  35. Wendel A (1981) Glutathione peroxidase. Meth Enzymol 77:325–333. https://doi.org/10.1016/s0076-6879(81)77046-0

    Article  CAS  Google Scholar 

  36. Habig W, Pabts M, Jakoby W (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  37. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  38. Przbylkowski A, Gromadzka G, Wawer A, Grygorowicz T, Cybulska A, Czlonkowka A (2013) Intestinal expression of metal transporters in Wilson’s disease. Biometals 26:925–934. https://doi.org/10.1007/s10534-013-9668-5

    Article  CAS  Google Scholar 

  39. Saporito Magriñá CM, Musacco Sebio RN, Andrieux G, Kook L, Orrego MT, Tuttolomondo MV, Desimone MF, Boerries M, Borner C, Repetto MG (2018) Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress. Metallomics 10(12):1743–1754. https://doi.org/10.1039/c8mt00182k

    Article  CAS  PubMed  Google Scholar 

  40. Rao P, Hayon E (1973) Experimental determination of the redox potential of the superoxide radical O2. Biochem Biophys Res Commun 51:468–473. https://doi.org/10.1016/0006-291X(73)91280-1

    Article  CAS  PubMed  Google Scholar 

  41. Finkel T (2000) Redox dependent signal transduction. FEBS Lett 476:52–54. https://doi.org/10.1016/S0014-5793(00)01669-0

    Article  CAS  PubMed  Google Scholar 

  42. Ansari H, Roberts K, Scheff S (2014) A time course of NADPH-oxidase upregulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma. Free Radic Biol Med 77:21–29. https://doi.org/10.1016/J.freeradbiomed.2014.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199. https://doi.org/10.3109/10715769309145868

    Article  CAS  PubMed  Google Scholar 

  44. Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12:7. https://doi.org/10.1186/s13024-017-0150-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldsteins G, Hakosalo V, Jaronen M, Keuters MH, Lehtonen Š, Koistinaho J (2022) CNS redox homeostasis and dysfunction in neurodegenerative diseases. Antioxidants 11:405. https://doi.org/10.3390/antiox11020405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cvetko F, Caldwell S, Higgin M, Suzuki T, Yamamoto M, Prag H, Hartley R, Dinkova-Kostova A, Murphy M (2021) Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. Biol Chem 296:100169. https://doi.org/10.1074/jbc.RA120.016551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Alberto Boveris for his teachings and scientific contributions at the beginning of this research work, guiding the development of this experimental line.

Funding

This study was supported by grants from the University of Buenos Aires (UBACyT 20020170100197BA); the National Research Council of Argentina (CONICET) and the National Agency of Science and Technology of Argentina (ANPCYT) (PICT-2016–002077).

Author information

Authors and Affiliations

Authors

Contributions

CS-M: methodology, validation, investigation, visualization, FL: validation, formal analysis, methodology, investigation, writing-original-draft, RM-S: methodology, investigation, JF: investigation, HT: investigation, resources, MGR: conceptualization, formal analysis, writing-original-draft, writing, review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Marisa Gabriela Repetto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saporito-Magriñá, C., Lairion, F., Musacco-Sebio, R. et al. Biochemical regulatory processes in the control of oxidants and antioxidants production in the brain of rats with iron and copper chronic overloads. J Biol Inorg Chem 27, 665–677 (2022). https://doi.org/10.1007/s00775-022-01960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01960-5

Keywords

Navigation