Skip to main content

Advertisement

Log in

Comparative Evaluation of Trace Metal Distribution and Correlation in Human Malignant and Benign Breast Tissues

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selected trace metals were analyzed in human malignant and nonmalignant (benign) breast tissue samples by the flame atomic absorption spectrophotometric method. In malignant tissues, dominant mean concentrations were revealed by Na, K, Ca, Mg, Fe, Zn, and Al at 927, 552, 231, 61.7, 36.5, 18.3, and 8.94 μg/g, respectively, while the mean metal levels in benign tissues were 903, 435, 183, 63.3, 24.7, 14.5, and 10.1 μg/g, respectively. Average concentrations of Cd, Co, Cr, Cu, Fe, Mn, K, Ca, and Zn were noted to be significantly higher in the malignant tissues compared with the benign tissues. Significantly strong correlations (r > 0.50) in malignant tissues were observed between Mn and Co, Mn and Cd, Cd and Cr, Fe and Mn, Cd and Co, Fe and Co, Mg and Pb, Cd and Fe, Mg and Ni, Pb and Ni, Ni and Sr, and Fe and Pb, whereas, Cd and Co, Cd and Mn, Co and Mg, Co and Mn, Cu and Mn, Co and Ni, Mg and Ni, Cd and Cu, Cd and Ni, Ca and Mg, Mn and Pb, Cu and Ni, Fe and Ni, Cd and Mg, Co and Cu, Cr and Na, and Cd and Cr revealed strong and significant relationships in benign tissues at p < 0.001. Principal component analysis of the metals data yielded six principal components for malignant tissues and five principal components for benign tissues, with considerably different loadings, duly supported by cluster analysis. The study revealed a considerably different pattern of distribution and mutual correlations of trace metals in the breast tissues of benign and cancerous patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feinendegen LE, Kasperek K (1980) Medical aspects of trace element research. In: Bratter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology. Walter de Gruyter, Berlin, pp 1–17

    Google Scholar 

  2. Peereboom JWC (1985) General aspects of trace elements and health. Sci Total Environ 42:1–27

    Article  CAS  Google Scholar 

  3. Rao AN (2005) Trace element estimation—methods and clinical context. Online J Health Allied Sci 4:1–9

    Google Scholar 

  4. Shtangeeva I, Kulikov V (1995) Study of chemical element behaviour in health and disease by means of neutron activation analysis and multivariate statistics. Nutrition 11:592–594

    PubMed  CAS  Google Scholar 

  5. Swierenga SHH, Gilman JPW, McLean JR (1987) Cancer risk from inorganics. Cancer Metastasis Rev 6:113–154

    Article  PubMed  CAS  Google Scholar 

  6. Bower JJ, Leonard SS, Shi X (2005) Conference overview: molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 279:3–15

    Article  PubMed  CAS  Google Scholar 

  7. Yaman M (2006) Comprehensive comparison of trace metal concentrations in cancerous and non-cancerous human tissues. Curr Med Chem 13:2513–2525

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz MK (1975) The role of trace element in cancer. Cancer Res 35:3481–3487

    PubMed  CAS  Google Scholar 

  9. Snow ET (1992) Metal carcinogenesis: mechanistic implications. Pharmac Ther 53:31–65

    Article  CAS  Google Scholar 

  10. Feldman EB (1993) Dietary intervention and chemoprevention—1992 perspective. Prev Med 22:661–666

    Article  PubMed  CAS  Google Scholar 

  11. Bowen P (2000) Dietary intervention strategies: validity, execution and interpretation of outcomes in nutrition and cancer prevention. Kluwer, Dordrecht

    Google Scholar 

  12. Pogo BGT, Holland JF (1997) Possibilities of a viral etiology for human breast cancer. Biol Trace Elem Res 56:131–142

    Article  PubMed  CAS  Google Scholar 

  13. Tsai JH, Tsai CH, Cheng MH, Lin SJ, Xu FL, Yang CC (2004) Association of viral factors with non-familial breast cancer in Taiwan by comparison with non-cancerous, fibroadenoma, and thyroid tumor. J Med Virol 75:276–281

    Article  Google Scholar 

  14. Weinstein IB (1988) The origins of human cancer. Cancer Res 48:4135–4143

    PubMed  CAS  Google Scholar 

  15. Clemens MR (1991) Free radicals in chemical carcinogenesis. J Mol Med 69:1123–1134

    CAS  Google Scholar 

  16. Majewska U, Braziewicz J, Banas D, Kukus KA, Gozdz S, Pajek M, Smok J, Urbaniak A (1997) An elemental correlation study in cancerous breast tissue by total reflection X-ray fluorescence. Biol Trace Elem Res 60:91–100

    Article  PubMed  CAS  Google Scholar 

  17. Singh V, Garg AN (1998) Trace element correlations in the blood of Indian women with breast cancer. Biol Trace Elem Res 64:237–245

    Article  PubMed  CAS  Google Scholar 

  18. Kilic E, Saravmen R, Demiroglu A, Ok E (2004) Chromium and manganese levels in the scalp hair of normals and patients with breast cancer. Biol Trace Elem Res 102:19–25

    Article  PubMed  CAS  Google Scholar 

  19. Raju GJN, Sarita P, Kumar MR, Murty GAVR, Reddy BS, Lakshminarayana S, Vijayan V, Lakshmi PVBR, Gavarasana S, Reddy SB (2006) Trace elemental correlation study in malignant and normal breast tissue by PIXE technique. Nucl Instrum Methods Phys Res B 247:361–367

    Article  CAS  Google Scholar 

  20. Dabek JT, Hyvonen DM, Harkonen M, Adlercreutz H (1992) Evidence for increased non-ceruloplasmin copper in early stage human breast cancer serum. Nutr Cancer 17:195–201

    Article  PubMed  CAS  Google Scholar 

  21. Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Cause Control 8:371–385

    Article  CAS  Google Scholar 

  22. Siddiqui MKJ, Jyoti, Singh S, Mehrotra PK, Singh K, Sarangi R (2006) Comparison of some trace elements concentration in blood, tumor free breast and tumor tissues of women with benign and malignant breast lesions: an Indian study. Environ Int 32:630–637

    Article  PubMed  CAS  Google Scholar 

  23. Schrauzer GN (2006) Interactive effects of selenium and chromium on mammary tumor development and growth in MMTV-infected female mice and their relevance to human cancer. Biol Trace Elem Res 109:281–292

    Article  PubMed  CAS  Google Scholar 

  24. Hopke PK (1992) Factor and correlation analysis of multivariate environmental data. In: Hewitt CN (ed) Methods of environmental data analysis. Elsevier, London, pp 139–180

    Google Scholar 

  25. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

    Google Scholar 

  26. Jobson JD (1991) Applied multivariate data analysis. Springer, New York

    Google Scholar 

  27. Katoh Y, Sato T, Yamamoto Y (2002) Determination of multielement concentrations in normal human organs from the Japanese. Biol Trace Elem Res 90:57–70

    Article  PubMed  CAS  Google Scholar 

  28. Aitio A, Jarvisalo J, Stoeppler M (1994) Sampling and sample storage. In: Herber RFM, Stoeppler M (eds) Trace element analysis in biological specimens. Elsevier, Amsterdam, pp 3–13

    Chapter  Google Scholar 

  29. Sansoni B, Panday VK (1994) Sample treatment of human biological materials. In: Herber RFM, Stoeppler M (eds) Trace element analysis in biological samples. Elsevier, Amsterdam, pp 21–52

    Chapter  Google Scholar 

  30. Rahil-Khazen R, Bolann BJ, Ulvik RJ (2002) Correlations of trace element levels within and between different normal autopsy tissues analysed by inductively coupled plasma atomic emission spectrometry. Biometals 15:87–98

    Article  PubMed  CAS  Google Scholar 

  31. StatSoft (1999) STATISTICA for Windows. Computer program manual. StatSoft, Tulsa, OK

    Google Scholar 

  32. Rizk SL, Sky-Peck HH (1984) Comparison between concentrations of trace elements in normal and neoplastia human breast tissue. Cancer Res 44:5390–5394

    PubMed  CAS  Google Scholar 

  33. Wang S, Leonard SS, Ye J, Ding M, Shi X (2000) The role of hydroxyl radical as a messenger in Cr(VI)-induced p53 activation. Am J Physiol Cell Physiol 279:C868–C875

    PubMed  CAS  Google Scholar 

  34. Zhao C, Yang J, Li X, Chen S, Chen J (1993) Analysis of trace elements in scalp hair of healthy people, breast cancer and hyperplasia patients with XRF method. J West China Univ Med Sci 24:402–404

    CAS  Google Scholar 

  35. Drasch G, Schopfer J, Schrauzer GN (2005) Selenium/Cadmium rations in human prostrates. Indicators for prostate cancer risk of smokers and non-smokers and relevance to the cancer protective effects of selenium. Biol Trace Elem Res 103:103–107

    Article  PubMed  CAS  Google Scholar 

  36. Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortality correlation studies—IV: associations with dietary intakes and blood levels of certain trace elements, notably Se-antagonists. Bioinorg Chem 7:35–56

    Article  PubMed  CAS  Google Scholar 

  37. Schrauzer GN (2008) Interactive effects of selenium and cadmium on mammary tumor development and growth in MMTV-infected female mice. A model study on the roles of cadmium and selenium in human breast cancer. Biol Trace Elem Res, DOI 10.1007/s12011-008-8091-1

  38. Reddy SB, Charles MJ, Raju GJN, Reddy BS, Reddy TS, Lakshmi PVBR, Vijayan V (2004) Trace elemental analysis of cancer-afflicted intestine by PIXE technique. Biol Trace Elem Res 102:265–281

    Article  PubMed  CAS  Google Scholar 

  39. Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  PubMed  CAS  Google Scholar 

  40. McCord JM (1996) Effects of positive iron status at a cellular level. Nutr Rev 54:85–88

    Article  PubMed  CAS  Google Scholar 

  41. Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S (1993) Serum and tissues trace elements in colorectal cancer. J Surg Oncol 52:172–175

    Article  PubMed  CAS  Google Scholar 

  42. Brem S (1999) Angiogenesis and cancer control: from concept to therapeutic trial. Cancer Control 6:436–458

    PubMed  Google Scholar 

  43. Hu GF (1998) Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 69:326–335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The funding by Higher Education Commission, Government of Pakistan, to carry out this project is gratefully acknowledged. We are also thankful to the administration of POF Hospital, Wah Cantt, and Christian Hospital, Taxila, for their invaluable help during the sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir H. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasha, Q., Malik, S.A., Iqbal, J. et al. Comparative Evaluation of Trace Metal Distribution and Correlation in Human Malignant and Benign Breast Tissues. Biol Trace Elem Res 125, 30–40 (2008). https://doi.org/10.1007/s12011-008-8158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8158-z

Keywords

Navigation