Skip to main content
Log in

Prenatal Zinc Deficiency: Influence on Heart Morphology and Distribution of Key Heart Proteins in a Rat Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The etiology of congenital heart disease is multifactorial, with genetics and nutritional deficiencies recognized as causative agents. Maternal zinc (Zn) deficiency is associated with an increased risk for fetal heart malformations; however, the contributing mechanisms have yet to be identified. In this study, we fed pregnant rats a Zn-adequate diet (ZnA), a Zn-deficient (ZnD), or a restricted amount of Zn adequate diet (RF) beginning on gestation day (GD) 4.5, to examine whether increased cell death and changes in cardiac neural crest cells (NCC) play a role in Zn deficiency-induced heart defects. Fetuses were collected on GD 13.5, 15.5, and 18.5 and processed for GATA-4, FOG-2, connexin-43 (Cx43), HNK-1, smooth muscle α-actin (SMA) and cleaved caspase-3 protein expression. Fetuses from ZnA-fed dams showed normal heart development, whereas fetuses from dams fed with the ZnD diet exhibited a variety of heart anomalies, particularly in the region of the outflow tract. HNK-1 expression was lower than normal in the hearts of GD13.5 and 15.5 ZnD fetuses, particularly in the right atrium and in the distal tip of the interventricular septum. Conversely, Cx43 immunoreactivity was increased throughout the heart in fetuses from ZnD dams compared to fetuses from control dams. The distribution and intensity of expression of SMA, GATA-4, FOG-2, and markers of apoptosis were similar among the three groups. We propose that Zn deficiency induced alterations in the distribution of Cx43 and HNK-1 in fetal hearts contribute to the occurrence of the developmental heart anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maret W, Sanstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elements Med Biol 20:3–18

    Article  CAS  Google Scholar 

  2. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    PubMed  CAS  Google Scholar 

  3. Kelishadi R, Alikhassy H, Amiri M (2002) Zinc and copper status in children with high family risk of premature cardiovascular disease. Ann Saudi Med 22:291–294

    PubMed  Google Scholar 

  4. Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD (2000) Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey. 1988–1994. J Nutr 130:1367S–1373S

    PubMed  CAS  Google Scholar 

  5. Keen CL, Hanna LA, Lanoue L, Uriu-Adams JY, Rucker RB, Clegg MS (2003) Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 133:1477S–1480S

    PubMed  CAS  Google Scholar 

  6. Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK (2006) Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44:239–251

    Article  PubMed  CAS  Google Scholar 

  7. Keen CL (1996) Teratogenic effects of essential trace metals: deficiency and excesses. In: Chang LW, Magos L, Suzuki T (eds) Toxicology of metals. CRC, New York, pp 977–1001

    Google Scholar 

  8. Rogers JM, Keen CL, Hurley LS (1985) Zinc deficiency in pregnant Long-Evans hooded rats: teratogenicity and tissue trace elements. Teratology 31:89–100

    Article  PubMed  CAS  Google Scholar 

  9. Duffy JY, Overmann GJ, Keen CL, Clegg MS, Daston GP (2004) Cardiac abnormalities induced by zinc deficiency are associated with alterations in the expression of genes regulated by the zinc-finger transcription factor GATA-4. Birth Defects Res B Dev Reprod Toxicol 71:102–109

    Article  PubMed  CAS  Google Scholar 

  10. Mackenzie GG, Zago MP, Aimo L, Oteiza PI (2007) Zinc deficiency in neuronal biology. IUBMB Life 59:299–307

    Article  PubMed  CAS  Google Scholar 

  11. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  PubMed  CAS  Google Scholar 

  12. Merten KE, Jiang Y, Kang YJ (2007) Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells. Exp Biol Med (Maywood) 232:682–689

    CAS  Google Scholar 

  13. Aimo L, Oteiza PI (2006) Zinc deficiency increases the susceptibility of human neuroblastoma cells to lead-induced activator protein-1 activation. Toxicol Sci 91:184–191

    Article  PubMed  CAS  Google Scholar 

  14. Clegg MS, Hanna LA, Niles BJ, Momma TY, Keen CL (2005) Zinc deficiency-induced cell death. IUBMB Life 57:661–669

    Article  PubMed  CAS  Google Scholar 

  15. King LE, Osati-Ashtiani F, Fraker PJ (2002) Apoptosis plays a distinct role in the loss of precursor lymphocytes during zinc deficiency in mice. J Nutr 132:974–979

    PubMed  CAS  Google Scholar 

  16. Chou SS, Clegg MS, Momma TY, Niles BJ, Duffy JY, Daston GP, Keen CL (2004) Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death. Biochem J 383:63–71

    Article  PubMed  CAS  Google Scholar 

  17. Min YK, Lee JE, Chung KC (2007) Zinc induces cell death in immortalized embryonic hippocampal cells via activation of Akt-GSK-3beta signaling. Exp Cell Res 313:312–321

    Article  PubMed  CAS  Google Scholar 

  18. Mirkes PE (2002) 2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratology 65:228–239

    Article  PubMed  CAS  Google Scholar 

  19. Dunty WC, Chen SY, Zucker RM, Dehart DB, Sulik KK (2001) Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: implications for alcohol-related birth defects and neurodevelopmental disorder. Alcohol Clin Exp Res 25:1523–1535

    Article  PubMed  CAS  Google Scholar 

  20. Little SA, Mirkes PE (2002) Teratogen-induced activation of caspase-9 and the mitochondrial apoptotic pathway in early postimplantation mouse embryos<. Toxicol Appl Pharmacol 181:142–151

    Article  PubMed  CAS  Google Scholar 

  21. Sulik KK, Cook CS, Webster WS (1988) Teratogens and craniofacial malformations: relationships to cell death. Development 103(Suppl):213–231

    PubMed  CAS  Google Scholar 

  22. Thayer JM, Mirkes PE (1995) Programmed cell death and N-acetoxy-2-acetylaminofluorene-induced apoptosis in the rat embryo. Teratology 51:418–429

    Article  PubMed  CAS  Google Scholar 

  23. Hanna LA, Clegg MS, Momma TY, Daston GP, Rogers JM, Keen CL (2003) Zinc influences the in vitro development of peri-implantation mouse embryos. Birth Defects Res A Clin Mol Teratol 67:414–420

    Article  PubMed  CAS  Google Scholar 

  24. Osati-Ashtiani F, King LE, Fraker PJ (1998) Variance in the resistance of murine early bone marrow B cells to a deficiency in zinc. Immunology 94:94–100

    Article  PubMed  CAS  Google Scholar 

  25. Harding AJ, Dreosti IE, Tulsi RS (1988) Zinc deficiency in the 11 day rat embryo: a scanning and transmission electron microscope study. Life Sciences 42:889–896

    Article  PubMed  CAS  Google Scholar 

  26. Jankowski-Hennig MA, Clegg MS, Daston GP, Rogers JM, Keen CL (2000) Zinc-deficient rat embryos have increased caspase 3-like activity and apoptosis. Biochem Biophys Res Commun 271:250–256

    Article  PubMed  CAS  Google Scholar 

  27. Rogers JM, Taubeneck MW, Daston GP, Sulik KK, Zucker RM, Elstein KH, Jankowski MA, Keen CK (1995) Zinc deficiency causes apoptosis but not cell cycle alterations in organogenesis-stage rat embryos: effect of varying duration of deficiency. Teratology 52:149–159

    Article  PubMed  CAS  Google Scholar 

  28. Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2–13

    Article  PubMed  CAS  Google Scholar 

  29. Hutson MR, Kirby ML (2007) Model systems for the study of heart development and disease Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18:101–110

    Article  PubMed  CAS  Google Scholar 

  30. Waldo K, Miyagawa-Tomita S, Kumiski D, Kirby ML (1998) Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol 196:129–144

    Article  PubMed  CAS  Google Scholar 

  31. Waldo KL, Hutson MR, Stadt HA, Zdanowicz M, Zdanowicz J, Kirby ML (2005) Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. Dev Biol 281:66–77

    Article  PubMed  CAS  Google Scholar 

  32. Epstein JA, Li J, Lang D, Chen F, Brown CB, Jin F, Lu MM, Thomas M, Liu E, Wessels A, Lo CW (2000) Migration of cardiac neural crest cells in Splotch embryos. Development 127:1869–1878

    PubMed  CAS  Google Scholar 

  33. Fujino H, Nakagawa M, Nishijima S, Okamoto N, Hanato T, Watanabe N, Shirai T, Kamiya H, Takeuchi Y (2005) Morphological differences in cardiovascular anomalies induced by bis-diamine between Sprague–Dawley and Wistar rats. Congenit Anom (Kyoto) 45:52–58

    Article  CAS  Google Scholar 

  34. Gurjarpadhye A, Hewett KW, Justus C, Wen X, Stadt H, Kirby ML, Sedmera D, Gourdie RG (2007) Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 292:H1291–1300

    Article  PubMed  CAS  Google Scholar 

  35. Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA (2004) Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development 131:3481–3490

    Article  PubMed  CAS  Google Scholar 

  36. Kirby ML, urnage KL 3rd, Hays BM (1985) Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec 213:87–93

    Article  PubMed  CAS  Google Scholar 

  37. Li J, Molkentin JD, Colbert MC (2001) Retinoic acid inhibits cardiac neural crest migration by blocking c-Jun N-terminal kinase activation. Dev Biol 232:351–361

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura T, Colbert MC, Robbins J (2006) Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res 98:1547–1554

    Article  PubMed  CAS  Google Scholar 

  39. Stoller JZ, Epstein JA (2005) Cardiac neural crest. Semin Cell Dev Biol 16:704–715

    Article  PubMed  CAS  Google Scholar 

  40. St Amand TR, Lu JT, Chien KR (2003) Defects in cardiac conduction system lineages and malignant arrhythmias: developmental pathways and disease. Novartis Found Symp 250:260–270 (discussion 271–265, 276–269)

    PubMed  CAS  Google Scholar 

  41. St Amand TR, Lu JT, Zamora M, Gu Y, Stricker J, Hoshijima M, Epstein JA, Ross JJ, Ruiz-Lozano P, Chien KR (2006) Distinct roles of HF-1b/Sp4 in ventricular and neural crest cells lineages affect cardiac conduction system development. Dev Biol 291:208–217

    Article  PubMed  CAS  Google Scholar 

  42. Van Kempen MJ, Vermeulen JL, Moorman AF, Gros D, Paul DL, Lamers WH (1996) Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 32:886–900

    Article  PubMed  Google Scholar 

  43. Waldo KL, Lo CW, Kirby ML (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 208:307–323

    Article  PubMed  CAS  Google Scholar 

  44. Xu X, Francis R, Wei CJ, Linask KL, Lo CW (2006) Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133:3629–3639

    Article  PubMed  CAS  Google Scholar 

  45. Liu S, Liu F, Schneider AE, St Amand T, Epstein JA, Gutstein DE (2006) Distinct cardiac malformations caused by absence of connexin 43 in the neural crest and in the non-crest neural tube. Development 133:2063–2073

    Article  PubMed  CAS  Google Scholar 

  46. Xu X, Li WE, Huang GY, Meyer R, Chen T, Luo Y, Thomas MP, Radice GL, Lo WW (2001) N-cadherin and Cx43alpha1 gap junctions modulates mouse neural crest cell motility via distinct pathways. Cell Commun Adhes 8:321–324

    Article  PubMed  CAS  Google Scholar 

  47. Li WE, Waldo K, Linask KL, Chen T, Wessels A, Parmacek MS, Kirby ML, Lo CW (2002) An essential role for connexin43 gap junctions in mouse coronary artery development. Development 129:2031–2042

    PubMed  CAS  Google Scholar 

  48. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    Article  PubMed  CAS  Google Scholar 

  49. Sullivan R, Huang GY, Meyer RA, Wessels A, Linask KK, Lo CW (1998) Heart malformations in transgenic mice exhibiting dominant negative inhibition of gap junctional communication in neural crest cells. Dev Biol 204:224–234

    Article  PubMed  CAS  Google Scholar 

  50. Choudhary B, Ito Y, Makita T, Sasaki T, Chai Y, Sucov HM (2006) Cardiovascular malformations with normal smooth muscle differentiation in neural crest-specific type II TGFbeta receptor (Tgfbr2) mutant mice. Dev Biol 289:420–429

    Article  PubMed  CAS  Google Scholar 

  51. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    PubMed  CAS  Google Scholar 

  52. Waller BR 3rd, McQuinn T, Phelps AL, Markwald RR, Lo CW, Thompson RP, Wessels A (2000) Conotruncal anomalies in the trisomy 16 mouse: an immunohistochemical analysis with emphasis on the involvement of the neural crest. Anat Rec 260:279–293

    Article  PubMed  Google Scholar 

  53. Aoyama N, Yamashina S, Poelmann RE, Gittenberger-De Groot AC, Izumi T, Soma K, Ohwada T (2002) Conduction system abnormalities in rat embryos induced by maternal hyperthermia. Anat Rec 267:213–219

    Article  PubMed  Google Scholar 

  54. Blom NA, Gittenberger-de Groot AC, DeRuiter MC, Poelmann RE, Mentink MM, Ottenkamp J (1999) Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. Circulation 99:800–806

    PubMed  CAS  Google Scholar 

  55. Chau MD, Tuft R, Fogarty K, Bao ZZ (2006) Notch signaling plays a key role in cardiac cell differentiation. Mech Dev 123:626–640

    Article  PubMed  CAS  Google Scholar 

  56. Erickson CA, Loring JF, Lester SM (1989) Migratory pathways of HNK-1-immunoreactive neural crest cells in the rat embryo. Dev Biol 134:112–118

    Article  PubMed  CAS  Google Scholar 

  57. Kise K, Nakagawa M, Okamoto N, Hanato T, Watanabe N, Nishijima S, Fujino H, Takeuchi Y, Shiraishi I (2005) Teratogenic effects of bis-diamine on the developing cardiac conduction system. Birth Defects Res A Clin Mol Teratol 73:547–554

    Article  PubMed  CAS  Google Scholar 

  58. Nagase T, Sanai Y, Nakamura S, Asato H, Harii K, Osumi N (2003) Roles of HNK-1 carbohydrate epitope and its synthetic glucuronyltransferase genes on migration of rat neural crest cells. J Anat 203:77–88

    Article  PubMed  CAS  Google Scholar 

  59. Nakagawa M, Thompson RP, Terracio L, Borg TK (1993) Developmental anatomy of HNK-1 immunoreactivity in the embryonic rat heart: co-distribution with early conduction tissue. Anat Embryol (Berl) 187:445–460

    CAS  Google Scholar 

  60. Nishida A, Kobayashi T, Ariyuki F (1997) In vitro developmental toxicity of concanavalin A in rat embryos: analysis of neural crest cell migration using monoclonal antibody HNK-1. Teratog Carcinog Mutagen 17:103–114

    Article  PubMed  CAS  Google Scholar 

  61. Wenink AC, Symersky P, Ikeda T, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (2000) HNK-1 expression patterns in the embryonic rat heart distinguish between sinuatrial tissues and atrial myocardium. Anat Embryol (Berl) 201:39–50

    Article  CAS  Google Scholar 

  62. Cantor AB, Orkin SH (2005) Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. Semin Cell Dev Biol 16:117–128

    Article  PubMed  CAS  Google Scholar 

  63. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952

    Article  PubMed  CAS  Google Scholar 

  64. Peterkin T, Gibson A, Loose M, Patient R (2005) The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol 16:83–94

    Article  PubMed  CAS  Google Scholar 

  65. Clegg MS, Keen CL, Lonnerdal B, Hurley LS (1981) Influence of ashing techniques in the analysis of trace elements in animal tissue. I. Wet ashing. Biol Trace Element Res 3:107–115

    CAS  Google Scholar 

  66. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  67. Tanner K, Sabrine N, Wren C (2005) Cardiovascular malformations among preterm infants. Pediatrics 116:e833–838

    Article  PubMed  Google Scholar 

  68. Record IR, Tulsi RS, Dreosti IE, Fraser FJ (1985) Cellular necrosis in zinc-deficient rat embryos. Teratology 32:397–405

    Article  PubMed  CAS  Google Scholar 

  69. Chimienti F, Seve M, Richard S, Mathieu J, Favier A (2001) Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 62:51–62

    Article  PubMed  CAS  Google Scholar 

  70. Cartwright MM, Tessmer LL, Smith SM (1998) Ethanol-induced neural crest poptosis is coincident with their endogenous death, but is mechanistically distinct. Alcohol Clin Exp Res 22:142–149

    PubMed  CAS  Google Scholar 

  71. Nishijima S, Nakagawa M, Fujino H, Hanato T, Okamoto N, Shimada M (2000) Teratogenic effects of bis-diamine on early embryonic rat heart: an in vitro study. Teratology 62:115–122

    Article  PubMed  CAS  Google Scholar 

  72. Boot MJ, Gittenberger-De Groot AC, Van Iperen L, Hierck BP, Poelmann RE (2003) Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries. Anat Rec A Discov Mol Cell Evol Biol 275:1009–1018

    Article  PubMed  Google Scholar 

  73. Baker CV, Bronner-Fraser M, Le Douarin NM, Teillet MA (1997) Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124:3077–3087

    PubMed  CAS  Google Scholar 

  74. Kirby MK (2002) Molecular embryogenesis of the heart. Pediatr Dev Pathol 5:516–543

    Article  PubMed  Google Scholar 

  75. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE (1999) Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene. Mol Hum Reprod 5:757–766

    Article  PubMed  CAS  Google Scholar 

  76. Teunissen BE, Jansen AT, van Amersfoorth SC, O’Brien TX, Jongsma HJ, Bierhuizen MF (2003) Analysis of the rat connexin 43 proximal promoter in neonatal cardiomyocytes. Gene 322:123–136

    Article  PubMed  CAS  Google Scholar 

  77. Meerarani P, Reiterer G, Toborek M, Hennig B (2003) Zinc modulates PPARgamma signaling and activation of porcine endothelial cell. J Nutr 133:3058–3064

    PubMed  CAS  Google Scholar 

  78. Oteiza PI, Clegg MS, Zago MP, Keen CL (2000) Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells. Free Radic Biol Med 28:1091–1099

    Article  PubMed  CAS  Google Scholar 

  79. Gonzalez-Reyes S, Fernandez-Dumont V, Calonge WM, Martinez L, Tovar JA (2006) Expression of Connexin 43 in the hearts of rat embryos exposed to nitrofen and effects of vitamin A on it. Pediatr Surg Int 22:61–65

    Article  PubMed  Google Scholar 

  80. Boot MJ, Gittenberger-de Groot AC, Poelmann RE, Gourdie RG (2006) Connexin43 levels are increased in mouse neural crest cells exposed to homocysteine. Birth Defects Res A Clin Mol Teratol 76:133–137

    Article  PubMed  CAS  Google Scholar 

  81. Huang GY, Cooper ES, Waldo K, Kirby ML, Gilula NB, Lo CW (1998) Gap junction-mediated cell-cell communication modulates mouse neural crest migration. J Cell Biol 143:1725–1734

    Article  PubMed  CAS  Google Scholar 

  82. Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339

    PubMed  CAS  Google Scholar 

  83. Lo CW, Cohen MF, Huang GY, Lazatin BO, Patel N, Sullivan R, Pauken C, Park SM (1997) Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells. Dev Genet 20:119–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Institutes of Health: HD-01743, T32-DK07355, and DK35747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Lanoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, V., Keen, C.L. & Lanoue, L. Prenatal Zinc Deficiency: Influence on Heart Morphology and Distribution of Key Heart Proteins in a Rat Model. Biol Trace Elem Res 122, 238–255 (2008). https://doi.org/10.1007/s12011-007-8079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8079-2

Keywords

Navigation