Skip to main content
Log in

Long-term health risk of offspring born from assisted reproductive technologies

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Since the world’s first in vitro fertilization baby was born in 1978, there have been more than 8 million children conceived through assisted reproductive technologies (ART) worldwide, and a significant proportion of them have reached puberty or young adulthood. Many studies have found that ART increases the risk of adverse perinatal outcomes, including preterm birth, low birth weight, small size for gestational age, perinatal mortality, and congenital anomalies. However, data regarding the long-term outcomes of ART offspring are limited. According to the developmental origins of health and disease theory, adverse environments during early life stages may induce adaptive changes and subsequently result in an increased risk of diseases in later life. Increasing evidence also suggests that ART offspring are predisposed to an increased risk of non-communicable diseases, such as malignancies, asthma, obesity, metabolic syndrome, diabetes, cardiovascular diseases, and neurodevelopmental and psychiatric disorders. In this review, we summarize the risks for long-term health in ART offspring, discuss the underlying mechanisms, including underlying parental infertility, epigenetic alterations, non-physiological hormone levels, and placental dysfunction, and propose potential strategies to optimize the management of ART and health care of parents and children to eliminate the associated risks. Further ongoing follow-up and research are warranted to determine the effects of ART on the long-term health of ART offspring in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this manuscript, as no new datasets (human or animal) were generated or analyzed during the current study.

Abbreviations

ART:

Assisted reproductive technologies

IVF:

In vitro fertilization

ICSI:

Intracytoplasmic sperm injection

PGT:

Preimplantation genetic testing

SC:

Spontaneously conceived

IUGR:

Intrauterine growth restriction

ALL:

Acute lymphoid leukemia

FET:

Frozen embryo transfer

BMI:

Body mass index

HFD:

High-fat diet

TSH:

Thyroid-stimulating hormone

TRH:

Thyrotropin-releasing hormone

E2:

Estradiol

ET:

Embryo transplantation

T4:

Thyroxine

FT4:

Free thyroxine

ASD:

Autism spectrum disorder

PCOS:

Polycystic ovarian syndrome

ADHD:

Attention deficit and hyperactivity disorder

ID:

Intellectual disability

OHSS:

Ovarian hyperstimulation syndrome

CP:

Cerebral palsy

OS:

Ovulation stimulation

IGF2:

Insulin-like growth factor 2

COH:

Controlled ovarian hyperstimulation

OCP:

Oral contraceptive pill

SET:

Single-embryo transfer

NCD:

Non-communicable diseases

DOHaD:

Developmental origins of health and disease

HR:

Hazard ratio

OR:

Odd ratio

CI:

Confidence interval

SFA:

Saturated fatty acid

HOMA-IR:

Homeostasis model assessment-insulin resistance

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

RR:

Relative risk

PGD:

Preimplantation genetic diagnosis

DHEAS:

Dehydroepiandrosterone sulfate

LH:

Luteinizing hormone

DNA:

Deoxyribonucleic acid

EEC:

Endometrial epithelial cell

YCM:

Y-chromosome microdeletion

RNA:

Ribonucleic acid

MII:

Meiosis II

TFG:

Trafficking from ER to golgi regulator

MAPK:

Mitogen-activated protein kinase

AKT:

Protein kinase B

FSH:

Follicle-stimulating hormone

LBW:

Low birth weight

SGA:

Small for gestational age

LGA:

Large for gestational age

hCG:

Human chorionic gonadotrophin

OB/GYN:

Obstetrics and gynecology

IQ:

Intelligence quotient

niPGT:

Noninvasive PGT

NO:

Nitrogen monoxide

GnRH‑a:

Gonadotropin-releasing hormone analogue

References

  1. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care, 2017. Hum Reprod. 2017;32(9):1786–801. https://doi.org/10.1093/humrep/dex234.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fauser BCJM. Towards the global coverage of a unified registry of IVF outcomes. Reprod Biomed Online. 2019;38(2):133–7. https://doi.org/10.1016/j.rbmo.2018.12.001.

    Article  MathSciNet  PubMed  Google Scholar 

  3. Wyns C, De Geyter C, Calhaz-Jorge C, Kupka MS, Motrenko T, Smeenk J, et al. ART in Europe, 2018: results generated from European registries by ESHRE. Hum Reprod Open. 2022;2022(3):hoac022. https://doi.org/10.1093/hropen/hoac022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sunderam S, Kissin DM, Zhang Y, Jewett A, Boulet SL, Warner L, et al. 2022 Assisted reproductive technology surveillance — United States. MMWR Surveill Summ. 2018;71(4):1–19.

    Article  Google Scholar 

  5. Qiao J, Wang YY, Li XH, Jiang F, Zhang YT, Ma J, et al. A lancet commission on 70 years of women’s reproductive, maternal, newborn, child, and adolescent health in China. Lancet. 2021;397(10293):2497–536. https://doi.org/10.1016/S0140-6736(20)32708-2.

    Article  CAS  PubMed  Google Scholar 

  6. Bai F, Wang DY, Fan YJ, Qiu J, Wang L, Dai Y, et al. Assisted reproductive technology service availability, efficacy and safety in mainland China: 2016. Hum Reprod. 2020;35(2):446–52. https://doi.org/10.1093/humrep/dez245.

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan-Pyke CS, Senapati S, Mainigi MA, Barnhart KT. In vitro fertilization and adverse obstetric and perinatal outcomes. Semin Perinatol. 2017;41(6):345–53. https://doi.org/10.1053/j.semperi.2017.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503. https://doi.org/10.1093/humupd/dms018.

    Article  PubMed  Google Scholar 

  9. Luke B, Brown MB, Wantman E, Forestieri NE, Browne ML, Fisher SC, et al. The risk of birth defects with conception by ART. Hum Reprod. 2021;36(1):116–29. https://doi.org/10.1093/humrep/deaa272.

    Article  PubMed  Google Scholar 

  10. McDonald SD, Han Z, Mulla S, Murphy KE, Beyene J, Ohlsson A, et al. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gyn R B. 2009;146(2):138–48. https://doi.org/10.1016/j.ejogrb.2009.05.035.

    Article  Google Scholar 

  11. Motrenko T. Embryo-fetal origin of diseases – new approach on epigenetic reprogramming. Arch Perinat Med. 2010;6. https://api.semanticscholar.org/CorpusID:55605762.

  12. Huang HF, Sheng J-Z. Gamete and embryo-fetal origins of adult diseases. Dordrecht: Springer; 2014. https://doi.org/10.1007/978-94-007-7772-9.

    Book  Google Scholar 

  13. Wilson CL, Fisher JR, Hammarberg K, Amor DJ, Halliday JL. Looking downstream: a review of the literature on physical and psychosocial health outcomes in adolescents and young adults who were conceived by ART. Hum Reprod. 2011;26(5):1209–19. https://doi.org/10.1093/humrep/der041.

    Article  CAS  PubMed  Google Scholar 

  14. Spaan M, van den Belt-Dusebout AW, van den Heuvel-Eibrink MM, Hauptmann M, Lambalk CB, Burger CW, et al. Risk of cancer in children and young adults conceived by assisted reproductive technology. Hum Reprod. 2019;34(4):740–50. https://doi.org/10.1093/humrep/dey394.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Spector LG, Brown MB, Wantman E, Letterie GS, Toner JP, Doody K, et al. Association of in vitro fertilization with childhood cancer in the United States. Jama Pediatr. 2019;173(6):e190392. https://doi.org/10.1001/jamapediatrics.2019.0392.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hargreave M, Jensen A, Hansen MK, Dehlendorff C, Winther JF, Schmiegelow K, et al. Association between fertility treatment and cancer risk in children. Jama-J Am Med Assoc. 2019;322(22):2203–10. https://doi.org/10.1001/jama.2019.18037.

    Article  Google Scholar 

  17. Wijs LA, Fusco MR, Doherty DA, Keelan JA, Hart RJ. Asthma and allergies in offspring conceived by ART: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(1):132–48. https://doi.org/10.1093/humupd/dmab031.

    Article  Google Scholar 

  18. Kallen B, Finnstrom O, Nygren KG, Olausson PO. Asthma in Swedish children conceived by in vitro fertilisation. Arch Dis Child. 2013;98(2):92–6. https://doi.org/10.1136/archdischild-2012-301822.

    Article  PubMed  Google Scholar 

  19. Norrman E, Petzold M, Gissler M, Spangmose AL, Opdahl S, Henningsen AK, et al. Cardiovascular disease, obesity, and type 2 diabetes in children born after assisted reproductive technology: a population-based cohort study. PLoS Med. 2021;18(9):e1003723. https://doi.org/10.1371/journal.pmed.1003723.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Norrman E, Petzold M, Clausen TD, Henningsen AK, Opdahl S, Pinborg A, et al. Type 1 diabetes in children born after assisted reproductive technology: a register-based national cohort study. Hum Reprod. 2020;35(1):221–31. https://doi.org/10.1093/humrep/dez227.

    Article  CAS  PubMed  Google Scholar 

  21. Sakka SD, Malamitsi-Puchner A, Loutradis D, Chrousos GP, Kanaka-Gantenbein C. Euthyroid hyperthyrotropinemia in children born after in vitro fertilization. J Clin Endocr Metab. 2009;94(4):1338–41. https://doi.org/10.1210/jc.2008-1624.

    Article  CAS  PubMed  Google Scholar 

  22. Davidovitch M, Chodick G, Shalev V, Eisenberg VH, Dan U, Reichenberg A, et al. Infertility treatments during pregnancy and the risk of autism spectrum disorder in the offspring. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:175–9. https://doi.org/10.1016/j.pnpbp.2018.05.022.

    Article  PubMed  Google Scholar 

  23. Wang C, Johansson ALV, Rodriguez-Wallberg KA, Almqvist C, Hernández-Díaz S, Oberg AS. Assisted reproductive techniques, ADHD, and school performance. Pediatrics. 2021;148(1). https://doi.org/10.1542/peds.2020-033183.

  24. Sandin S, Nygren KG, Iliadou A, Hultman CM, Reichenberg A. Autism and mental retardation among offspring born after in vitro fertilization. JAMA. 2013;310(1):75–84. https://doi.org/10.1001/jama.2013.7222.

    Article  CAS  PubMed  Google Scholar 

  25. Norrman E, Petzold M, Bergh C, Wennerholm UB. School performance in children born after ICSI. Hum Reprod. 2020;35(2):340–54. https://doi.org/10.1093/humrep/dez281.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barbuscia A, Mills MC. Cognitive development in children up to age 11 years born after ART-a longitudinal cohort study. Hum Reprod. 2017;32(7):1482–8. https://doi.org/10.1093/humrep/dex102.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goldsmith S, McIntyre S, Badawi N, Hansen M. Cerebral palsy after assisted reproductive technology: a cohort study. Dev Med Child Neurol. 2018;60(1):73–80. https://doi.org/10.1111/dmcn.13577.

    Article  PubMed  Google Scholar 

  28. Kettner LO, Kesmodel US, Ramlau-Hansen CH, Bay B, Ritz B, Matthiesen NB, et al. Fertility treatment and childhood epilepsy: a nationwide cohort study. Epidemiology. 2017;28(3):412–8. https://doi.org/10.1097/ede.0000000000000618.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang C, Johansson ALV, Rodriguez-Wallberg KA, Landén M, Almqvist C, Hernández-Díaz S, et al. Long-term follow-up of psychiatric disorders in children and adolescents conceived by assisted reproductive techniques in Sweden. JAMA Psychiat. 2022;79(2):133–42. https://doi.org/10.1001/jamapsychiatry.2021.3647.

    Article  Google Scholar 

  30. Belva F, Bonduelle M, Roelants M, Michielsen D, Van Steirteghem A, Verheyen G, et al. Semen quality of young adult ICSI offspring: the first results. Hum Reprod. 2016;31(12):2811–20. https://doi.org/10.1093/humrep/dew245.

    Article  CAS  PubMed  Google Scholar 

  31. Belva F, Roelants M, Painter R, Bonduelle M, Devroey P, De Schepper J. Pubertal development in ICSI children. Hum Reprod. 2012;27(4):1156–61. https://doi.org/10.1093/humrep/des001.

    Article  CAS  PubMed  Google Scholar 

  32. Wisborg K, Ingerslev HJ, Henriksen TB. In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study. Fertil Steril. 2010;94(6):2102–6. https://doi.org/10.1016/j.fertnstert.2010.01.014.

    Article  PubMed  Google Scholar 

  33. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.

    Article  PubMed  Google Scholar 

  34. Chang H-Y, Hwu W-L, Chen C-H, Hou C-Y, Cheng W. Children conceived by assisted reproductive technology prone to low birth weight, preterm birth, and birth defects: a cohort review of more than 50,000 live births during 2011–2017 in Taiwan. Front Pediatr. 2020;8:87. https://doi.org/10.3389/fped.2020.00087.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Kondapalli LA, Perales-Puchalt A. Low birth weight: is it related to assisted reproductive technology or underlying infertility? Fertil Steril. 2013;99(2):303–10. https://doi.org/10.1016/j.fertnstert.2012.12.035.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang YA, Sullivan EA, Black D, Dean J, Bryant J, Chapman M. Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril. 2005;83(6):1650–8.

    Article  PubMed  Google Scholar 

  37. Opdahl S, Henningsen AA, Tiitinen A, Bergh C, Pinborg A, Romundstad PR, et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod. 2015;30(7):1724–31. https://doi.org/10.1093/humrep/dev090.

    Article  CAS  PubMed  Google Scholar 

  38. Manna C, Lacconi V, Rizzo G, De Lorenzo A, Massimiani M. Placental dysfunction in assisted reproductive pregnancies: perinatal, neonatal and adult life outcomes. Int J Mol Sci. 2022;23(2):659. https://doi.org/10.3390/ijms23020659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang X, Li Y, Li C, Zhang W. Current overview of pregnancy complications and live-birth outcome of assisted reproductive technology in mainland China. Fertil Steril. 2014;101(2):385–91. https://doi.org/10.1016/j.fertnstert.2013.10.017.

    Article  PubMed  Google Scholar 

  40. Xiang M, Chen S, Zhang X, Ma Y. Placental diseases associated with assisted reproductive technology. Reprod Biol. 2021;21(2):100505. https://doi.org/10.1016/j.repbio.2021.100505.

    Article  CAS  PubMed  Google Scholar 

  41. Sedaghat K, Zahediasl S, Ghasemi A. Intrauterine programming. Iran J Basic Med Sci. 2015;18(3):212–20.

    PubMed  PubMed Central  Google Scholar 

  42. Mi D, Fang H, Zhao Y, Zhong L. Birth weight and type 2 diabetes: a meta-analysis. Exp Ther Med. 2017;14(6):5313–20. https://doi.org/10.3892/etm.2017.5234.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359(3):262–73. https://doi.org/10.1056/NEJMoa0706475.

    Article  CAS  PubMed  Google Scholar 

  44. Luu TM, Rehman Mian MO, Nuyt AM. Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin Perinatol. 2017;44(2):305–14. https://doi.org/10.1016/j.clp.2017.01.003.

    Article  PubMed  Google Scholar 

  45. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ. 2019;365:l1346. https://doi.org/10.1136/bmj.l1346.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fowden AL, Giussani DA, Forhead AJ. Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda). 2006;21:29–37.

    CAS  PubMed  Google Scholar 

  47. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.

    Article  CAS  PubMed  Google Scholar 

  48. Bruinsma F, Venn A, Lancaster P, Speirs A, Healy D. Incidence of cancer in children born after in-vitro fertilization. Hum Reprod. 2000;15(3):604–7. https://doi.org/10.1093/humrep/15.3.604.

    Article  CAS  PubMed  Google Scholar 

  49. Klip H, Burger CW, de Kraker J, van Leeuwen FE, Grp O-p. Risk of cancer in the offspring of women who underwent ovarian stimulation for IVF. Hum Reprod. 2001;16(11):2451–8. https://doi.org/10.1093/humrep/16.11.2451.

    Article  CAS  PubMed  Google Scholar 

  50. Lerner-Geva L, Toren A, Chetrit A, Modan B, Mandel M, Rechavi G, et al. The risk for cancer among children of women who underwent in vitro fertilization. Cancer. 2000;88(12):2845–7. https://doi.org/10.1002/1097-0142(20000615)88:12%3c2845::Aid-Cncr26%3e3.0.Co;2-E.

    Article  CAS  PubMed  Google Scholar 

  51. Williams CL, Bunch KJ, Stiller CA, Murphy MFG, Botting BJ, Wallace WH, et al. Cancer risk among children born after assisted conception. New Engl J Med. 2013;369(19):1819–27. https://doi.org/10.1056/NEJMoa1301675.

    Article  CAS  PubMed  Google Scholar 

  52. Sundh KJ, Henningsen AKA, Kallen K, Bergh C, Romundstad LB, Gissler M, et al. Cancer in children and young adults born after assisted reproductive technology: a Nordic cohort study from the Committee of Nordic ART and Safety (CoNARTaS). Hum Reprod. 2014;29(9):2050–7. https://doi.org/10.1093/humrep/deu143.

    Article  PubMed  Google Scholar 

  53. Marley AR, Domingues A, Ghosh T, Turcotte LM, Spector LG. Maternal body mass index, diabetes, and gestational weight gain and risk for pediatric cancer in offspring: a systematic review and meta-analysis. Jnci Cancer Spect. 2022;6(2):pkac020. https://doi.org/10.1093/jncics/pkac020.

    Article  Google Scholar 

  54. Bluhm E, McNeil DE, Cnattingius S, Gridley G, El Ghormli L, Fraumeni JF. Prenatal and perinatal risk factors for neuroblastoma. Int J Cancer. 2008;123(12):2885–90. https://doi.org/10.1002/ijc.23847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fadhil I, Soliman R, Jaffar S, Al Madhi S, Saab R, Belgaumi A, et al. Estimated incidence, prevalence, mortality, and registration of childhood cancer (ages 0–14 years) in the WHO Eastern Mediterranean region: an analysis of GLOBOCAN 2020 data. Lancet Child Adolesc Health. 2022;6:466. https://doi.org/10.1016/S2352-4642(22)00122-5.

    Article  PubMed  Google Scholar 

  56. Dugue PA, Hodge AM, Wong EM, Joo JE, Jung CH, Hopper JL, et al. Methylation marks of prenatal exposure to maternal smoking and risk of cancer in adulthood. Int J Epidemiol. 2021;50(1):105–15. https://doi.org/10.1093/ije/dyaa210.

    Article  PubMed  Google Scholar 

  57. Spector LG, Klebanoff MA, Feusner JH, Georgieff MK, Ross JA. Childhood cancer following neonatal oxygen supplementation. J Pediatr-Us. 2005;147(1):27–31. https://doi.org/10.1016/j.jpeds.2005.03.008.

    Article  Google Scholar 

  58. Kallen B, Finnstrom O, Lindam A, Nilsson E, Nygren KG, Olausson PO. Cancer risk in children and young adults conceived by in vitro fertilization. Pediatrics. 2010;126(2):E270–6. https://doi.org/10.1542/peds.2009-3225.

    Article  Google Scholar 

  59. Cnattingius S, Zack MM, Ekbom A, Gunnarskog J, Kreuger A, Linet M, et al. Prenatal and neonatal risk factors for childhood lymphatic leukemia. J Natl Cancer Inst. 1995;87(12):908–14. https://doi.org/10.1093/jnci/87.12.908.

    Article  CAS  PubMed  Google Scholar 

  60. Milne E, Greenop KR, Metayer C, Schuz J, Petridou E, Pombo-de-Oliveira MS, et al. Fetal growth and childhood acute lymphoblastic leukemia: findings from the childhood leukemia international consortium. Int J Cancer. 2013;133(12):2968–79. https://doi.org/10.1002/ijc.28314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chokkalingam AP, Metayer C, Scelo G, Chang JS, Schiffman J, Urayama KY, et al. Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control. 2012;23(9):1577–85. https://doi.org/10.1007/s10552-012-0035-6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. MacLean J, Partap S, Reynolds P, Von Behren J, Fisher PG. Birth weight and order as risk factors for childhood central nervous system tumors. J Pediatr-Us. 2010;157(3):450–5. https://doi.org/10.1016/j.jpeds.2010.04.006.

    Article  Google Scholar 

  63. Bjorge T, Sorensen HT, Grotmol T, Engeland A, Stephansson O, Gissler M, et al. Fetal growth and childhood cancer: a population-based study. Pediatrics. 2013;132(5):E1265–75. https://doi.org/10.1542/peds.2013-1317.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rangel M, Cypriano M, de Martino Lee ML, Luisi FA, Petrilli AS, Strufaldi MW, et al. Leukemia, non-Hodgkin’s lymphoma, and Wilms tumor in childhood: the role of birth weight. Eur J Pediatr. 2010;169(7):875–81. https://doi.org/10.1007/s00431-010-1139-1.

    Article  PubMed  Google Scholar 

  65. Zhang YY, Gao R, Chen HX, Xu WM, Yang YH, Zeng X, et al. The association between fertility treatments and the incidence of paediatric cancer: a systematic review and meta-analysis. Eur J Cancer. 2020;138:133–48. https://doi.org/10.1016/j.ejca.2020.08.001.

    Article  PubMed  Google Scholar 

  66. Riesco MF, Robles V. Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. Plos One. 2013;8(6):e67614. https://doi.org/10.1371/journal.pone.0067614.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barberet J, Romain G, Binquet C, Guilleman M, Bruno C, Ginod P, et al. Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertil steril. 2021;116(6):1468–80. https://doi.org/10.1016/j.fertnstert.2021.08.014.

    Article  CAS  PubMed  Google Scholar 

  68. Pomeroy KO, Comizzoli P, Rushing JS, Lersten IL, Nel-Themaat L. The ART of cryopreservation and its changing landscape. Fertil Steril. 2022;117(3):469–76. https://doi.org/10.1016/j.fertnstert.2022.01.018.

    Article  CAS  PubMed  Google Scholar 

  69. Nagy ZP, Shapiro D, Chang C-C. Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment. Fertil Steril. 2020;113(2):241–7. https://doi.org/10.1016/j.fertnstert.2019.12.009.

    Article  CAS  PubMed  Google Scholar 

  70. Jaakkola JJK, Ahmed P, Ieromnimon A, Goepfert P, Laiou E, Quansah R, et al. Preterm delivery and asthma: a systematic review and meta-analysis. J Allergy Clin Immun. 2006;118(4):823–30. https://doi.org/10.1016/j.jaci.2006.06.043.

    Article  PubMed  Google Scholar 

  71. Voort AMMSVD, Arends LR, Jongste JC, Annesi-Maesano I, Arshad SH, Barros H, et al. Preterm birth, infant weight gain, and childhood asthma risk: a meta-analysis of 147,000 European children. J Allergy Clin Immun. 2014;133(5):1317–29. https://doi.org/10.1016/j.jaci.2013.12.1082.

    Article  Google Scholar 

  72. Magnus MC, Wilcox AJ, Fadum EA, Gjessing HK, Opdahl S, Juliusson PB, et al. Growth in children conceived by ART. Hum Reprod. 2021;36(4):1074–82. https://doi.org/10.1093/humrep/deab007.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93(5):1682–16888. https://doi.org/10.1210/jc.2007-2432.

    Article  CAS  PubMed  Google Scholar 

  74. Sakka SD, Loutradis D, Kanaka-Gantenbein C, Margeli A, Papastamataki M, Papassotiriou I, et al. Absence of insulin resistance and low-grade inflammation despite early metabolic syndrome manifestations in children born after in vitro fertilization. Fertil Steril. 2010;94(5):1693–9. https://doi.org/10.1016/j.fertnstert.2009.09.049.

    Article  CAS  PubMed  Google Scholar 

  75. Ceelen M, van Weissenbruch MM, Roos JC, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab. 2007;92(9):3417–23. https://doi.org/10.1210/jc.2006-2896.

    Article  CAS  PubMed  Google Scholar 

  76. Gu L, Zhang J, Zheng M, Dong G, Xu J, Zhang W, et al. A potential high risk for fatty liver disease was found in mice generated after assisted reproductive techniques. J Cell Biochem. 2018;119(2):1899–910. https://doi.org/10.1002/jcb.26351.

    Article  CAS  PubMed  Google Scholar 

  77. Wang LY, Le F, Wang N, Li L, Liu XZ, Zheng YM, et al. Alteration of fatty acid metabolism in the liver, adipose tissue, and testis of male mice conceived through assisted reproductive technologies: fatty acid metabolism in ART mice. Lipids Health Dis. 2013;12:5. https://doi.org/10.1186/1476-511x-12-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Belva F, De Schepper J, Roelants M, Tournaye H, Bonduelle M, Provyn S. Body fat content, fat distribution and adipocytokine production and their correlation with fertility markers in young adult men and women conceived by intracytoplasmic sperm injection (ICSI). Clin Endocrinol (Oxf). 2018;88(6):985–92. https://doi.org/10.1111/cen.13571.

    Article  CAS  PubMed  Google Scholar 

  79. Belva F, Bonduelle M, Provyn S, Painter RC, Tournaye H, Roelants M, et al. Metabolic syndrome and its components in young adults conceived by ICSI. Int J Endocrinol. 2018;2018:8170518. https://doi.org/10.1155/2018/8170518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Narapareddy L, Rhon-Calderon EA, Vrooman LA, Baeza J, Nguyen DK, Mesaros C, et al. Sex-specific effects of in vitro fertilization on adult metabolic outcomes and hepatic transcriptome and proteome in mouse. Faseb j. 2021;35(4):e21523. https://doi.org/10.1096/fj.202002744R.

    Article  CAS  PubMed  Google Scholar 

  81. Guo XY, Liu XM, Jin L, Wang TT, Ullah K, Sheng JZ, et al. Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil Steril. 2017;107(3):622-31 e5. https://doi.org/10.1016/j.fertnstert.2016.12.007.

    Article  PubMed  Google Scholar 

  82. Cui L, Zhou W, Xi B, Ma J, Hu J, Fang M, et al. Increased risk of metabolic dysfunction in children conceived by assisted reproductive technology. Diabetologia. 2020;63(10):2150–7. https://doi.org/10.1007/s00125-020-05241-1.

    Article  CAS  PubMed  Google Scholar 

  83. Cerny D, Sartori C, Rimoldi SF, Meister T, Soria R, Bouillet E, et al. Assisted reproductive technologies predispose to insulin resistance and obesity in male mice challenged with a high-fat diet. Endocrinology. 2017;158(5):1152–9. https://doi.org/10.1210/en.2016-1475.

    Article  CAS  PubMed  Google Scholar 

  84. Kettner LO, Matthiesen NB, Ramlau-Hansen CH, Kesmodel US, Bay B, Henriksen TB. Fertility treatment and childhood type 1 diabetes mellitus: a nationwide cohort study of 565,116 live births. Fertil Steril. 2016;106(7):1751–6. https://doi.org/10.1016/j.fertnstert.2016.09.009.

    Article  PubMed  Google Scholar 

  85. Cui L, Zhao M, Zhang Z, Zhou W, Lv J, Hu J, et al. Assessment of cardiovascular health of children ages 6 to 10 years conceived by assisted reproductive technology. JAMA Netw Open. 2021;4(11):e2132602. https://doi.org/10.1001/jamanetworkopen.2021.32602.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Boutet ML, Casals G, Valenzuela-Alcaraz B, García-Otero L, Crovetto F, Cívico MS, et al. Cardiac remodeling in fetuses conceived by ARTs: fresh versus frozen embryo transfer. Hum Reprod. 2021;36(10):2697–708. https://doi.org/10.1093/humrep/deab159.

    Article  CAS  PubMed  Google Scholar 

  87. Valenzuela-Alcaraz B, Serafini A, Sepulveda-Martínez A, Casals G, Rodríguez-López M, Garcia-Otero L, et al. Postnatal persistence of fetal cardiovascular remodelling associated with assisted reproductive technologies: a cohort study. BJOG. 2019;126(2):291–8. https://doi.org/10.1111/1471-0528.15246.

    Article  CAS  PubMed  Google Scholar 

  88. Gao Q, Pan HT, Lin XH, Zhang JY, Jiang Y, Tian S, et al. Altered protein expression profiles in umbilical veins: insights into vascular dysfunctions of the children born after in vitro fertilization. Biol Reprod. 2014;91(3):71. https://doi.org/10.1095/biolreprod.114.120659.

    Article  CAS  PubMed  Google Scholar 

  89. Kuiper D, Hoek A, la Bastide-van GS, Seggers J, Mulder DJ, Haadsma M, et al. Cardiovascular health of 9-year-old IVF offspring: no association with ovarian hyperstimulation and the in vitro procedure. Hum Reprod. 2017;32(12):2540–8. https://doi.org/10.1093/humrep/dex323.

    Article  PubMed  Google Scholar 

  90. Elsner S, Katalinic A, Ludwig AK, Sonntag B, Martensen MJ, Kixmüller D, et al. A comparison of metabolic health parameters in ICSI-conceived and naturally conceived adolescents. Reprod Biomed Online. 2020;41(4):686–97. https://doi.org/10.1016/j.rbmo.2020.06.006.

    Article  CAS  PubMed  Google Scholar 

  91. Halliday J, Lewis S, Kennedy J, Burgner DP, Juonala M, Hammarberg K, et al. Health of adults aged 22 to 35 years conceived by assisted reproductive technology. Fertil Steril. 2019;112(1):130–9. https://doi.org/10.1016/j.fertnstert.2019.03.001.

    Article  PubMed  Google Scholar 

  92. Onal H, Ercan O, Adal E, Ersen A, Onal Z. Subclinical hypothyroidism in in vitro fertilization babies. Acta Paediatr. 2012;101(6):e248–52. https://doi.org/10.1111/j.1651-2227.2011.02575.x.

    Article  PubMed  Google Scholar 

  93. Lv PP, Meng Y, Lv M, Feng C, Liu Y, Li JY, et al. Altered thyroid hormone profile in offspring after exposure to high estradiol environment during the first trimester of pregnancy: a cross-sectional study. Bmc Med. 2014;12:240. https://doi.org/10.1186/s12916-014-0240-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Idring S, Magnusson C, Lundberg M, Ek M, Rai D, Svensson AC, et al. Parental age and the risk of autism spectrum disorders: findings from a Swedish population-based cohort. Int J Epidemiol. 2014;43(1):107–15. https://doi.org/10.1093/ije/dyt262.

    Article  PubMed  Google Scholar 

  95. Lampi KM, Hinkka-Yli-Salomäki S, Lehti V, Helenius H, Gissler M, Brown AS, et al. Parental age and risk of autism spectrum disorders in a Finnish national birth cohort. J Autism Dev Disord. 2013;43(11):2526–35. https://doi.org/10.1007/s10803-013-1801-3.

    Article  PubMed  Google Scholar 

  96. Källén AJ, Finnström OO, Lindam AP, Nilsson EM, Nygren KG, Olausson PM. Cerebral palsy in children born after in vitro fertilization. Is the risk decreasing? Eur J Paediatr Neurol. 2010;14(6):526–30. https://doi.org/10.1016/j.ejpn.2010.03.007.

    Article  PubMed  Google Scholar 

  97. Andreadou MT, Katsaras GN, Talimtzi P, Doxani C, Zintzaras E, Stefanidis I. Association of assisted reproductive technology with autism spectrum disorder in the offspring: an updated systematic review and meta-analysis. Eur J Pediatr. 2021;180(9):2741–55. https://doi.org/10.1007/s00431-021-04187-9.

    Article  PubMed  Google Scholar 

  98. Hvidtjørn D, Grove J, Schendel D, Schieve LA, Sværke C, Ernst E, et al. Risk of autism spectrum disorders in children born after assisted conception: a population-based follow-up study. J Epidemiol Community Health. 2011;65(6):497–502. https://doi.org/10.1136/jech.2009.093823.

    Article  PubMed  Google Scholar 

  99. Bay B, Mortensen EL, Hvidtjørn D, Kesmodel US. Fertility treatment and risk of childhood and adolescent mental disorders: register based cohort study. BMJ. 2013;347: f3978. https://doi.org/10.1136/bmj.f3978.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cesta CE, Öberg AS, Ibrahimson A, Yusuf I, Larsson H, Almqvist C, et al. Maternal polycystic ovary syndrome and risk of neuropsychiatric disorders in offspring: prenatal androgen exposure or genetic confounding? Psychol Med. 2020;50(4):616–24. https://doi.org/10.1017/s0033291719000424.

    Article  PubMed  Google Scholar 

  101. Baron-Cohen S, Auyeung B, Nørgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015;20(3):369–76. https://doi.org/10.1038/mp.2014.48.

    Article  CAS  PubMed  Google Scholar 

  102. Kissin DM, Zhang Y, Boulet SL, Fountain C, Bearman P, Schieve L, et al. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum Reprod. 2015;30(2):454–65. https://doi.org/10.1093/humrep/deu338.

    Article  CAS  PubMed  Google Scholar 

  103. Knoester M, Helmerhorst FM, van der Westerlaken LA, Walther FJ, Veen S. Matched follow-up study of 5 8-year-old ICSI singletons: child behaviour, parenting stress and child (health-related) quality of life. Hum Reprod. 2007;22(12):3098–107. https://doi.org/10.1093/humrep/dem261.

    Article  CAS  PubMed  Google Scholar 

  104. Schieve LA, Drews-Botsch C, Harris S, Newschaffer C, Daniels J, DiGuiseppi C, et al. Maternal and paternal infertility disorders and treatments and autism spectrum disorder: findings from the study to explore early development. J Autism Dev Disord. 2017;47(12):3994–4005. https://doi.org/10.1007/s10803-017-3283-1.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Diop H, Cabral H, Gopal D, Cui X, Stern JE, Kotelchuck M. Early autism spectrum disorders in children born to fertile, subfertile, and ART-treated women. Matern Child Health J. 2019;23(11):1489–99. https://doi.org/10.1007/s10995-019-02770-z.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Agrawal S, Rao SC, Bulsara MK, Patole SK. Prevalence of autism spectrum disorder in preterm infants: a meta-analysis. Pediatrics. 2018;142(3). https://doi.org/10.1542/peds.2018-0134.

  107. Talmi Z, Mankuta D, Raz R. Birth weight and autism spectrum disorder: a population-based nested case-control study. Autism Res. 2020;13(4):655–65. https://doi.org/10.1002/aur.2260.

    Article  PubMed  Google Scholar 

  108. Lung FW, Chiang TL, Lin SJ, Lee MC, Shu BC. Assisted reproductive technology has no association with autism spectrum disorders: the Taiwan birth cohort study. Autism. 2018;22(3):377–84. https://doi.org/10.1177/1362361317690492.

    Article  PubMed  Google Scholar 

  109. Djuwantono T, Aviani JK, Permadi W, Achmad TH, Halim D. Risk of neurodevelopmental disorders in children born from different ART treatments: a systematic review and meta-analysis. J Neurodev Disord. 2020;12(1):33. https://doi.org/10.1186/s11689-020-09347-w.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Källén AJ, Finnström OO, Lindam AP, Nilsson EM, Nygren KG, Otterblad Olausson PM. Is there an increased risk for drug treated attention deficit/hyperactivity disorder in children born after in vitro fertilization? Eur J Paediatr Neurol. 2011;15(3):247–53. https://doi.org/10.1016/j.ejpn.2010.12.004.

    Article  PubMed  Google Scholar 

  111. Svahn MF, Hargreave M, Nielsen TS, Plessen KJ, Jensen SM, Kjaer SK, et al. Mental disorders in childhood and young adulthood among children born to women with fertility problems. Hum Reprod. 2015;30(9):2129–37. https://doi.org/10.1093/humrep/dev172.

    Article  CAS  PubMed  Google Scholar 

  112. Kosidou K, Dalman C, Widman L, Arver S, Lee BK, Magnusson C, et al. Maternal polycystic ovary syndrome and risk for attention-deficit/hyperactivity disorder in the offspring. Biol Psychiatry. 2017;82(9):651–9. https://doi.org/10.1016/j.biopsych.2016.09.022.

    Article  PubMed  Google Scholar 

  113. Hansen M, Greenop KR, Bourke J, Baynam G, Hart RJ, Leonard H. Intellectual disability in children conceived using assisted reproductive technology. Pediatrics. 2018;142(6):e20181269. https://doi.org/10.1542/peds.2018-1269.

    Article  PubMed  Google Scholar 

  114. Pinborg A, Loft A, Schmidt L, Greisen G, Rasmussen S, Andersen AN. Neurological sequelae in twins born after assisted conception: controlled national cohort study. BMJ. 2004;329(7461):311. https://doi.org/10.1136/bmj.38156.715694.3A.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rumbold AR, Moore VM, Whitrow MJ, Oswald TK, Moran LJ, Fernandez RC, et al. The impact of specific fertility treatments on cognitive development in childhood and adolescence: a systematic review. Hum Reprod. 2017;32(7):1489–507. https://doi.org/10.1093/humrep/dex085.

    Article  PubMed  Google Scholar 

  116. Lewon M, Wang Y, Peters C, Peterson M, Zheng H, Wang Z, et al. Assessment of operant learning and memory in mice born through ICSI. Hum Reprod. 2020;35(9):2058–71. https://doi.org/10.1093/humrep/deaa167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Heijligers M, Verheijden LMM, Jonkman LM, van der Sangen M, Meijer-Hoogeveen M, Arens Y, et al. The cognitive and socio-emotional development of 5-year-old children born after PGD. Hum Reprod. 2018;33(11):2150–7. https://doi.org/10.1093/humrep/dey302.

    Article  CAS  PubMed  Google Scholar 

  118. Winter C, Van Acker F, Bonduelle M, Desmyttere S, Nekkebroeck J. Psychosocial development of full term singletons, born after preimplantation genetic diagnosis (PGD) at preschool age and family functioning: a prospective case-controlled study and multi-informant approach. Hum Reprod. 2015;30(5):1122–36. https://doi.org/10.1093/humrep/dev036.

    Article  CAS  PubMed  Google Scholar 

  119. Nekkebroeck J, Bonduelle M, Desmyttere S, Van den Broeck W, Ponjaert-Kristoffersen I. Socio-emotional and language development of 2-year-old children born after PGD/PGS, and parental well-being. Hum Reprod. 2008;23(8):1849–57. https://doi.org/10.1093/humrep/den179.

    Article  PubMed  Google Scholar 

  120. Thomaidis L, Kitsiou-Tzeli S, Critselis E, Drandakis H, Touliatou V, Mantoudis S, et al. Psychomotor development of children born after preimplantation genetic diagnosis and parental stress evaluation. World J Pediatr. 2012;8(4):309–16. https://doi.org/10.1007/s12519-012-0374-0.

    Article  PubMed  Google Scholar 

  121. Yu Y, Wu J, Fan Y, Lv Z, Guo X, Zhao C, et al. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol Cell Proteomics. 2009;8(7):1490–500. https://doi.org/10.1074/mcp.M800273-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu GF, Zhou CL, Xiong YM, Li JY, Yu TT, Tian S, et al. Reduced intellectual ability in offspring of ovarian hyperstimulation syndrome: a cohort study. EBioMedicine. 2017;20:263–7. https://doi.org/10.1016/j.ebiom.2017.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhou CL, Xu GF, Yang Q, Wang HH, Guo MX, Xiong YM, et al. Diminished verbal ability among children conceived through ART with exposure to high serum estradiol in utero. J Assist Reprod Genet. 2020;37(8):1931–8. https://doi.org/10.1007/s10815-020-01835-1.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Judd N, Sauce B, Wiedenhoeft J, Tromp J, Chaarani B, Schliep A, et al. Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proc Natl Acad Sci U S A. 2020;117(22):12411–8. https://doi.org/10.1073/pnas.2001228117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang FF, Yu T, Chen XL, Luo R, Mu DZ. Cerebral palsy in children born after assisted reproductive technology: a meta-analysis. World J Pediatr. 2021;17(4):364–74. https://doi.org/10.1007/s12519-021-00442-z.

    Article  PubMed  Google Scholar 

  126. Hvidtjørn D, Grove J, Schendel D, Svaerke C, Schieve LA, Uldall P, et al. Multiplicity and early gestational age contribute to an increased risk of cerebral palsy from assisted conception: a population-based cohort study. Hum Reprod. 2010;25(8):2115–23. https://doi.org/10.1093/humrep/deq070.

    Article  PubMed  Google Scholar 

  127. Zhu JL, Hvidtjørn D, Basso O, Obel C, Thorsen P, Uldall P, et al. Parental infertility and cerebral palsy in children. Hum Reprod. 2010;25(12):3142–5. https://doi.org/10.1093/humrep/deq206.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Spangmose AL, Christensen LH, Henningsen AA, Forman J, Opdahl S, Romundstad LB, et al. Cerebral palsy in ART children has declined substantially over time: a Nordic study from the CoNARTaS group. Hum Reprod. 2021;36(8):2358–70. https://doi.org/10.1093/humrep/deab122.

    Article  PubMed  Google Scholar 

  129. Hvidtjorn D, Grove J, Schendel D, Svaerke C, Schieve LA, Uldall P, et al. Multiplicity and early gestational age contribute to an increased risk of cerebral palsy from assisted conception: a population-based cohort study. Hum Reprod. 2010;25(8):2115–23. https://doi.org/10.1093/humrep/deq070.

    Article  CAS  PubMed  Google Scholar 

  130. Roychoudhury S, Lodha A, Synnes A, Abou Mehrem A, Canning R, Banihani R, et al. Neurodevelopmental outcomes of preterm infants conceived by assisted reproductive technology. Am J Obstet Gynecol. 2021;225(3):276.e1-.e9. https://doi.org/10.1016/j.ajog.2021.03.027.

    Article  Google Scholar 

  131. Källén B, Finnström O, Nygren KG, Olausson PO. In vitro fertilization in Sweden: child morbidity including cancer risk. Fertil Steril. 2005;84(3):605–10. https://doi.org/10.1016/j.fertnstert.2005.03.035.

    Article  PubMed  Google Scholar 

  132. Kettner LO, Ramlau-Hansen CH, Kesmodel US, Bay B, Matthiesen NB, Henriksen TB. Parental infertility, fertility treatment, and childhood epilepsy: a population-based cohort study. Paediatr Perinat Epidemiol. 2016;30(5):488–95. https://doi.org/10.1111/ppe.12301.

    Article  PubMed  Google Scholar 

  133. Sun Y, Vestergaard M, Christensen J, Zhu JL, Bech BH, Olsen J. Epilepsy and febrile seizures in children of treated and untreated subfertile couples. Hum Reprod. 2007;22(1):215–20. https://doi.org/10.1093/humrep/del333.

    Article  PubMed  Google Scholar 

  134. Rudolf G, Bihoreau MT, Godfrey RF, Wilder SP, Cox RD, Lathrop M, et al. Polygenic control of idiopathic generalized epilepsy phenotypes in the genetic absence rats from Strasbourg (GAERS). Epilepsia. 2004;45(4):301–8. https://doi.org/10.1111/j.0013-9580.2004.50303.x.

    Article  PubMed  Google Scholar 

  135. Kettner LO, Matthiesen NB, Ramlau-Hansen CH, Kesmodel US, Henriksen TB. Fertility treatment with clomiphene citrate and childhood epilepsy: a nationwide cohort study. Hum Reprod. 2021;36(9):2567–75. https://doi.org/10.1093/humrep/deab110.

    Article  CAS  PubMed  Google Scholar 

  136. Wagenaar K, van Weissenbruch MM, Knol DL, Cohen-Kettenis PT, Delemarre-van de Waal HA, Huisman J. Behavior and socioemotional functioning in 9–18-year-old children born after in vitro fertilization. Fertil Steril. 2009;92(6):1907–14. https://doi.org/10.1016/j.fertnstert.2008.09.026.

    Article  PubMed  Google Scholar 

  137. Wagenaar K, van Weissenbruch MM, van Leeuwen FE, Cohen-Kettenis PT, Delemarre-van de Waal HA, Schats R, et al. Self-reported behavioral and socioemotional functioning of 11- to 18-year-old adolescents conceived by in vitro fertilization. Fertil Steril. 2011;95(2):611–6. https://doi.org/10.1016/j.fertnstert.2010.04.076.

    Article  PubMed  Google Scholar 

  138. Rissanen E, Gissler M, Lehti V, Tiitinen A. The risk of psychiatric disorders among Finnish ART and spontaneously conceived children: Finnish population-based register study. Eur Child Adolesc Psychiatry. 2020;29(8):1155–64. https://doi.org/10.1007/s00787-019-01433-2.

    Article  CAS  PubMed  Google Scholar 

  139. Qin NX, Zhao YR, Shi WH, Zhou ZY, Zou KX, Yu CJ, et al. Anxiety and depression-like behaviours are more frequent in aged male mice conceived by ART compared with natural conception. Reproduction. 2021;162(6):437–48. https://doi.org/10.1530/rep-21-0175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Feng C, Wang LQ, Dong MY, Huang HF. Assisted reproductive technology may increase clinical mutation detection in male offspring. Fertil Steril. 2008;90(1):92–6. https://doi.org/10.1016/j.fertnstert.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  141. Belva F, Roelants M, Vloeberghs V, Schiettecatte J, Evenepoel J, Bonduelle M, et al. Serum reproductive hormone levels and ultrasound findings in female offspring after intracytoplasmic sperm injection: first results. Fertil Steril. 2017;107(4):934. https://doi.org/10.1016/j.fertnstert.2017.02.102.

    Article  CAS  PubMed  Google Scholar 

  142. Hokken-Koelega AC. Timing of puberty and fetal growth. Best Pract Res Clin Endocrinol Metab. 2002;16(1):65–71. https://doi.org/10.1053/beem.2002.0181.

    Article  CAS  PubMed  Google Scholar 

  143. van Weissenbruch MM, Engelbregt MJT, Veening MA, Delemarre-van de Waal HA. Fetal nutrition and timing of puberty. Endocr Dev. 2005;8:15–33. https://doi.org/10.1159/000084084.

    Article  PubMed  Google Scholar 

  144. Klemetti R, Perry B, Henningsen AKA, Spangmose AL, Pinborg A, Opdahl S, et al. Puberty disorders among ART-conceived singletons: a Nordic register study from the CoNARTaS group. Hum Reprod. 2022;37(10):2402–11. https://doi.org/10.1093/humrep/deac192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, Delemarre-van de Waal HA. Pubertal development in children and adolescents born after IVF and spontaneous conception. Hum Reprod. 2008;23(12):2791–8. https://doi.org/10.1093/humrep/den309.

    Article  PubMed  Google Scholar 

  146. Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment: Part I-General health outcomes. Hum Reprod Update. 2013;19(3):232–43. https://doi.org/10.1093/humupd/dms062.

    Article  CAS  PubMed  Google Scholar 

  147. Fall CH, Sachdev HS, Osmond C, Restrepo-Mendez MC, Victora C, Martorell R, et al. Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration). Lancet Glob Health. 2015;3(7):e366–77. https://doi.org/10.1016/s2214-109x(15)00038-8.

    Article  PubMed  Google Scholar 

  148. Gillman MW, Rich-Edwards JW, Rifas-Shiman SL, Lieberman ES, Kleinman KP, Lipshultz SE. Maternal age and other predictors of newborn blood pressure. J Pediatr. 2004;144(2):240–5. https://doi.org/10.1016/j.jpeds.2003.10.064.

    Article  PubMed  Google Scholar 

  149. Whincup PH, Cook DG, Shaper AG. Early influences on blood pressure: a study of children aged 5–7 years. BMJ. 1989;299(6699):587–91. https://doi.org/10.1136/bmj.299.6699.587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32. https://doi.org/10.1038/35047554.

    Article  CAS  PubMed  Google Scholar 

  151. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607. https://doi.org/10.1038/s41580-019-0159-6.

    Article  CAS  PubMed  Google Scholar 

  152. Menon R, Conneely KN, Smith AK. DNA methylation: an epigenetic risk factor in preterm birth. Reprod Sci. 2012;19(1):6–13. https://doi.org/10.1177/1933719111424446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Soellner L, Begemann M, Mackay DJ, Gronskov K, Tumer Z, Maher ER, et al. Recent advances in imprinting disorders. Clin Genet. 2017;91(1):3–13. https://doi.org/10.1111/cge.12827.

    Article  CAS  PubMed  Google Scholar 

  154. White CR, Denomme MM, Tekpetey FR, Feyles V, Power SG, Mann MR. High frequency of imprinted methylation errors in human preimplantation embryos. Sci Rep. 2015;5:17311. https://doi.org/10.1038/srep17311.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20(6):840–52. https://doi.org/10.1093/humupd/dmu033.

    Article  CAS  PubMed  Google Scholar 

  156. Cortessis VK, Azadian M, Buxbaum J, Sanogo F, Song AY, Sriprasert I, et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Gen. 2018;35(6):943–52. https://doi.org/10.1007/s10815-018-1173-x.

    Article  Google Scholar 

  157. Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18(20):3769–78. https://doi.org/10.1093/hmg/ddp319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Song S, Ghosh J, Mainigi M, Turan N, Weinerman R, Truongcao M, et al. DNA methylation differences between in vitro- and in vivo-conceived children are associated with ART procedures rather than infertility. Clin Epigenetics. 2015;7:41. https://doi.org/10.1186/s13148-015-0071-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod. 2014;29(7):1452–8. https://doi.org/10.1093/humrep/deu094.

    Article  CAS  PubMed  Google Scholar 

  160. Lou H, Le F, Zheng Y, Li L, Wang L, Wang N, et al. Assisted reproductive technologies impair the expression and methylation of insulin-induced gene 1 and sterol regulatory element-binding factor 1 in the fetus and placenta. Fertil Steril. 2014;101(4):974-80 e2. https://doi.org/10.1016/j.fertnstert.2013.12.034.

    Article  CAS  PubMed  Google Scholar 

  161. Chen MX, Wu LD, Zhao JL, Wu F, Davies MJ, Wittert GA, et al. Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes. 2014;63(10):3189–98. https://doi.org/10.2337/db14-0103.

    Article  CAS  PubMed  Google Scholar 

  162. Liu Y, Li X, Chen S, Wang L, Tan Y, Li X, et al. Comparison of genome-wide DNA methylation profiles of human fetal tissues conceived by in vitro fertilization and natural conception. Front Cell Dev Biol. 2021;9:694769. https://doi.org/10.3389/fcell.2021.694769.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–92. https://doi.org/10.1093/humupd/dmv029.

    Article  PubMed  Google Scholar 

  164. Salmanian B, Fox KA, Arian SE, Erfani H, Clark SL, Aagaard KM, et al. In vitro fertilization as an independent risk factor for placenta accreta spectrum. Am J Obstet Gynecol. 2020;223(4):568.e1-.e5. https://doi.org/10.1016/j.ajog.2020.04.026.

    Article  Google Scholar 

  165. Thomopoulos C, Tsioufis C, Michalopoulou H, Makris T, Papademetriou V, Stefanadis C. Assisted reproductive technology and pregnancy-related hypertensive complications: a systematic review. J Hum Hypertens. 2013;27(3):148–57. https://doi.org/10.1038/jhh.2012.13.

    Article  CAS  PubMed  Google Scholar 

  166. Joy J, Gannon C, McClure N, Cooke I. Is assisted reproduction associated with abnormal placentation? Pediatr Dev Pathol. 2012;15(4):306–14. https://doi.org/10.2350/11-11-1115-OA.1.

    Article  PubMed  Google Scholar 

  167. Haavaldsen C, Tanbo T, Eskild A. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum Reprod. 2012;27(2):576–82. https://doi.org/10.1093/humrep/der428.

    Article  CAS  PubMed  Google Scholar 

  168. Lei LL, Lan YL, Wang SY, Feng W, Zhai ZJ. Perinatal complications and live-birth outcomes following assisted reproductive technology: a retrospective cohort study. Chin Med J (Engl). 2019;132(20):2408–16. https://doi.org/10.1097/CM9.0000000000000484.

    Article  PubMed  Google Scholar 

  169. Meng Y, Lv PP, Ding GL, Yu TT, Liu Y, Shen Y, et al. High maternal serum estradiol levels induce dyslipidemia in human newborns via a hepatic HMGCR estrogen response element. Sci Rep. 2015;5:10086. https://doi.org/10.1038/srep10086.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lv PP, Meng Y, Lv M, Feng C, Liu Y, Li JY, et al. Altered thyroid hormone profile in offspring after exposure to high estradiol environment during the first trimester of pregnancy: a cross-sectional study. Bmc Med. 2014;12:240. https://doi.org/10.1186/s12916-014-0240-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang H-H, Zhou C-L, Lv M, Yang Q, Li J-X, Hou M, et al. Prenatal high estradiol exposure induces sex-specific and dietarily reversible insulin resistance through decreased hypothalamic INSR. Endocrinology. 2017;159(1):465–76. https://doi.org/10.1210/en.2017-03017.

    Article  CAS  Google Scholar 

  172. Pistek VL, Fürst RW, Kliem H, Bauersachs S, Meyer HH, Ulbrich SE. HOXA10 mRNA expression and promoter DNA methylation in female pig offspring after in utero estradiol-17β exposure. J Steroid Biochem Mol Biol. 2013;138:435–44. https://doi.org/10.1016/j.jsbmb.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  173. Ullah K, Rahman TU, Pan HT, Guo MX, Dong XY, Liu J, et al. Serum estradiol levels in controlled ovarian stimulation directly affect the endometrium. J Mol Endocrinol. 2017;59(2):105–19. https://doi.org/10.1530/jme-17-0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Farhi J, Ben-Haroush A, Andrawus N, Pinkas H, Sapir O, Fisch B, et al. High serum oestradiol concentrations in IVF cycles increase the risk of pregnancy complications related to abnormal placentation. Reprod Biomed Online. 2010;21(3):331–7. https://doi.org/10.1016/j.rbmo.2010.04.022.

    Article  CAS  PubMed  Google Scholar 

  175. Chen XJ, Chen F, Lv PP, Zhang D, Ding GL, Hu XL, et al. Maternal high estradiol exposure alters CDKN1C and IGF2 expression in human placenta. Placenta. 2018;61:72–9. https://doi.org/10.1016/j.placenta.2017.11.009.

    Article  CAS  PubMed  Google Scholar 

  176. Pan JX, Liu Y, Ke ZH, Zhou CL, Meng Q, Ding GL, et al. Successive and cyclic oral contraceptive pill pretreatment improves IVF/ICSI outcomes of PCOS patients and ameliorates hyperandrogenism and antral follicle excess. Gynecol Endocrinol. 2015;31(4):332–6. https://doi.org/10.3109/09513590.2014.995621.

    Article  CAS  PubMed  Google Scholar 

  177. Tian S, Lin XH, Xiong YM, Liu ME, Yu TT, Lv M, et al. Prevalence of prediabetes risk in offspring born to mothers with hyperandrogenism. EBioMedicine. 2017;16:275–83. https://doi.org/10.1016/j.ebiom.2017.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25(2):271–85. https://doi.org/10.1016/j.beem.2010.08.006.

    Article  PubMed  Google Scholar 

  179. Punab M, Poolamets O, Paju P, Vihljajev V, Pomm K, Ladva R, et al. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum Reprod. 2017;32(1):18–31. https://doi.org/10.1093/humrep/dew284.

    Article  CAS  PubMed  Google Scholar 

  180. Repping S, Skaletsky H, Brown L, van Daalen SK, Korver CM, Pyntikova T, et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nature genetics. 2003;35(3):247–51. https://doi.org/10.1038/ng1250.

    Article  CAS  PubMed  Google Scholar 

  181. Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5(7):544–53. https://doi.org/10.1016/s2213-8587(16)30040-7.

    Article  PubMed  Google Scholar 

  182. Hargreave M, Jensen A, Hansen MK, Dehlendorff C, Winther JF, Schmiegelow K, et al. Association between fertility treatment and cancer risk in children. JAMA. 2019;322(22):2203–10. https://doi.org/10.1001/jama.2019.18037.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Asserhøj LL, Spangmose AL, Aaris Henningsen AK, Clausen TD, Ziebe S, Jensen RB, et al. Adverse obstetric and perinatal outcomes in 1,136 singleton pregnancies conceived after programmed frozen embryo transfer (FET) compared with natural cycle FET. Fertil Steril. 2021;115(4):947–56. https://doi.org/10.1016/j.fertnstert.2020.10.039.

    Article  PubMed  Google Scholar 

  184. Zhang J, Du M, Li Z, Wang L, Hu J, Zhao B, et al. Fresh versus frozen embryo transfer for full-term singleton birth: a retrospective cohort study. J Ovarian Res. 2018;11(1):59. https://doi.org/10.1186/s13048-018-0432-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lei X, Zhao D, Huang L, Luo Z, Zhang J, Yu X, et al. Childhood health outcomes in term, large-for-gestational-age babies with different postnatal growth patterns. Am J Epidemiol. 2018;187(3):507–14. https://doi.org/10.1093/aje/kwx271.

    Article  PubMed  Google Scholar 

  186. Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Qin T, et al. Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril. 2013;100(1):256–61. https://doi.org/10.1016/j.fertnstert.2013.03.009.

    Article  CAS  PubMed  Google Scholar 

  187. Chen W, Peng Y, Ma X, Kong S, Tan S, Wei Y, et al. Integrated multi-omics reveal epigenomic disturbance of assisted reproductive technologies in human offspring. EBioMedicine. 2020;61:103076. https://doi.org/10.1016/j.ebiom.2020.103076.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Gualtieri R, Iaccarino M, Mollo V, Prisco M, Iaccarino S, Talevi R. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril. 2009;91(4):1023–34. https://doi.org/10.1016/j.fertnstert.2008.01.076.

    Article  PubMed  Google Scholar 

  189. Somoskoi B, Martino NA, Cardone RA, Lacalandra GM, Dell’Aquila ME, Cseh S. Different chromatin and energy/redox responses of mouse morulae and blastocysts to slow freezing and vitrification. Reprod Biol Endocrinol. 2015;13:22. https://doi.org/10.1186/s12958-015-0018-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cuello C, Martinez CA, Cambra JM, Parrilla I, Rodriguez-Martinez H, Gil MA, et al. Effects of vitrification on the blastocyst gene expression profile in a porcine model. Int J Mol Sci. 2021;22(3):1222. https://doi.org/10.3390/ijms22031222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhu W, Zheng J, Wen Y, Li Y, Zhou C, Wang Z. Effect of embryo vitrification on the expression of brain tissue proteins in mouse offspring. Gynecol Endocrinol. 2020;36(11):973–7. https://doi.org/10.1080/09513590.2020.1734785.

    Article  CAS  PubMed  Google Scholar 

  192. Qin N, Zhou Z, Zhao W, Zou K, Shi W, Yu C, et al. Abnormal glucose metabolism in male mice offspring conceived by in vitro fertilization and frozen-thawed embryo transfer. Front Cell Dev Biol. 2021;9:637781. https://doi.org/10.3389/fcell.2021.637781.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Wu YT, Dong ZH, Li C, Zhou DZ, Zhang JY, Wu Y, et al. The effect of blastomere loss during frozen embryo transfer on the transcriptome of offspring’s umbilical cord blood. Mol Biol Rep. 2020;47(11):8407–17. https://doi.org/10.1007/s11033-020-05878-6.

    Article  CAS  PubMed  Google Scholar 

  194. Niederberger C, Pellicer A, Cohen J, Gardner DK, Palermo GD, O’Neill CL, et al. Forty years of IVF. Fertil Steril. 2018;110(2):185-324 e5. https://doi.org/10.1016/j.fertnstert.2018.06.005.

    Article  PubMed  Google Scholar 

  195. Hu XL, Feng C, Lin XH, Zhong ZX, Zhu YM, Lv PP, et al. High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth. J Clin Endocrinol Metab. 2014;99(6):2217–24. https://doi.org/10.1210/jc.2013-3362.

    Article  CAS  PubMed  Google Scholar 

  196. Pereira N, Elias RT, Christos PJ, Petrini AC, Hancock K, Lekovich JP, et al. Supraphysiologic estradiol is an independent predictor of low birth weight in full-term singletons born after fresh embryo transfer. Hum Reprod. 2017;32(7):1410–7. https://doi.org/10.1093/humrep/dex095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Duan CC, Li C, He YC, Xu JJ, Shi CY, Hu HT, et al. Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study. J Dev Orig Health Dis. 2020;11(4):392–402. https://doi.org/10.1017/s2040174419000679.

    Article  CAS  PubMed  Google Scholar 

  198. Anderson RE, Stein AL, Paulson RJ, Stanczyk FZ, Vijod AG, Lobo RA. Effects of norethindrone on gonadotropin and ovarian steroid secretion when used for cycle programming during in vitro fertilization. Fertil Steril. 1990;54(1):96–101. https://doi.org/10.1016/s0015-0282(16)53643-7.

    Article  CAS  PubMed  Google Scholar 

  199. Damario MA, Barmat L, Liu HC, Davis OK, Rosenwaks Z. Dual suppression with oral contraceptives and gonadotrophin releasing-hormone agonists improves in-vitro fertilization outcome in high responder patients. Hum Reprod. 1997;12(11):2359–65. https://doi.org/10.1093/humrep/12.11.2359.

    Article  CAS  PubMed  Google Scholar 

  200. Wang Y, Hu WH, Wan Q, Li T, Qian Y, Chen MX, et al. Effect of artificial cycle with or without GnRH-a pretreatment on pregnancy and neonatal outcomes in women with PCOS after frozen embryo transfer: a propensity score matching study. Reprod Biol Endocrinol. 2022;20(1):56. https://doi.org/10.1186/s12958-022-00929-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Salemi S, Yahyaei A, Vesali S, Ghaffari F. Endometrial preparation for vitrified-warmed embryo transfer with or without GnRH-agonist pre-treatment in patients with polycystic ovary syndrome: a randomized controlled trial. Reprod Biomed Online. 2021;43(3):446–52. https://doi.org/10.1016/j.rbmo.2021.06.006.

    Article  CAS  PubMed  Google Scholar 

  202. Zhang Y, Wu L, Li TC, Wang CC, Zhang T, Chung JPW. Systematic review update and meta-analysis of randomized and non-randomized controlled trials of ovarian stimulation versus artificial cycle for endometrial preparation prior to frozen embryo transfer in women with polycystic ovary syndrome. Reprod Biol Endocrinol. 2022;20(1):62. https://doi.org/10.1186/s12958-022-00931-4.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Scholten I, Chambers GM, van Loendersloot L, van der Veen F, Repping S, Gianotten J, et al. Impact of assisted reproductive technology on the incidence of multiple-gestation infants: a population perspective. Fertil Steril. 2015;103(1):179–83. https://doi.org/10.1016/j.fertnstert.2014.09.033.

    Article  PubMed  Google Scholar 

  204. Bergh C, Kamath MS, Wang R, Lensen S. Strategies to reduce multiple pregnancies during medically assisted reproduction. Fertil Steril. 2020;114(4):673–9. https://doi.org/10.1016/j.fertnstert.2020.07.022.

    Article  PubMed  Google Scholar 

  205. Kamath MS, Mascarenhas M, Kirubakaran R, Bhattacharya S. Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2020;8:CD003416. https://doi.org/10.1002/14651858.CD003416.pub5.

    Article  PubMed  Google Scholar 

  206. Eapen A, Ryan GL, Ten Eyck P, Van Voorhis BJ. Current evidence supporting a goal of singletons: a review of maternal and perinatal outcomes associated with twin versus singleton pregnancies after in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2020;114(4):690–714. https://doi.org/10.1016/j.fertnstert.2020.08.1423.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Katler QS, Kawwass JF, Hurst BS, Sparks AE, McCulloh DH, Wantman E, et al. Vanquishing multiple pregnancy in in vitro fertilization in the United States-a 25-year endeavor. Am J Obstet Gynecol. 2022;227(2):129–35. https://doi.org/10.1016/j.ajog.2022.02.005.

    Article  PubMed  Google Scholar 

  208. Castillo CM, Horne G, Fitzgerald CT, Johnstone ED, Brison DR, Roberts SA. The impact of IVF on birthweight from 1991 to 2015: a cross-sectional study. Hum Reprod. 2019;34(5):920–31. https://doi.org/10.1093/humrep/dez025.

    Article  PubMed  Google Scholar 

  209. Kuiper D, Bennema A, la Bastide-van GS, Seggers J, Schendelaar P, Haadsma M, et al. Neurodevelopmental and cardiometabolic outcome in 4-year-old twins and singletons born after IVF. Reprod Biomed Online. 2017;34(6):659–67. https://doi.org/10.1016/j.rbmo.2017.02.015.

    Article  PubMed  Google Scholar 

  210. van Heesch MM, Evers JL, van der Hoeven MA, Dumoulin JC, van Beijsterveldt CE, Bonsel GJ, et al. Hospital costs during the first 5 years of life for multiples compared with singletons born after IVF or ICSI. Hum Reprod. 2015;30(6):1481–90. https://doi.org/10.1093/humrep/dev059.

    Article  PubMed  Google Scholar 

  211. Jiang Y, Du Y, Su R, Zhou X, Wei L, Zhang J, et al. Long-term outcomes of offspring from multiple gestations: a two-sample Mendelian randomization study on multi-system diseases using UK Biobank and FinnGen databases. J Transl Med. 2023;21(1):608. https://doi.org/10.1186/s12967-023-04423-w.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Helmerhorst FM, Perquin DAM, Donker D, Keirse MJNC. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328(7434):261.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JQ, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393(10178):1310–8. https://doi.org/10.1016/s0140-6736(18)32843-5.

    Article  PubMed  Google Scholar 

  214. Ahuja KK, Macklon N. Vitrification and the demise of fresh treatment cycles in ART. Reprod Biomed Online. 2020;41(2):217–24. https://doi.org/10.1016/j.rbmo.2020.03.017.

    Article  PubMed  Google Scholar 

  215. Coutifaris C. Elective frozen embryo transfer for all? Lancet. 2019;393(10178):1264–5. https://doi.org/10.1016/s0140-6736(19)30426-x.

    Article  PubMed  Google Scholar 

  216. Vuong LN, Ly TT, Nguyen NA, Nguyen LMT, Le XTH, Le TK, et al. Development of children born from freeze-only versus fresh embryo transfer: follow-up of a randomized controlled trial. Fertil Steril. 2020;114(3):558–66. https://doi.org/10.1016/j.fertnstert.2020.04.041.

    Article  CAS  PubMed  Google Scholar 

  217. Meister TA, Rimoldi SF, Soria R, von Arx R, Messerli FH, Sartori C, et al. Association of assisted reproductive technologies with arterial hypertension during adolescence. J Am Coll Cardiol. 2018;72(11):1267–74. https://doi.org/10.1016/j.jacc.2018.06.060.

    Article  PubMed  Google Scholar 

  218. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55. https://doi.org/10.1093/humupd/dmw038.

    Article  CAS  PubMed  Google Scholar 

  219. Zandstra H, Brentjens L, Spauwen B, Touwslager RNH, Bons JAP, Mulder AL, et al. Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Hum Reprod. 2018;33(9):1645–56. https://doi.org/10.1093/humrep/dey246.

    Article  CAS  PubMed  Google Scholar 

  220. Sacha CR, Gopal D, Liu CL, Cabral HR, Stern JE, Carusi DA, et al. The impact of single-step and sequential embryo culture systems on obstetric and perinatal outcomes in singleton pregnancies: the Massachusetts outcomes study of assisted reproductive technology. Fertil Steril. 2022;117(6):1246–54. https://doi.org/10.1016/j.fertnstert.2022.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod. 2020;26(12):953–70. https://doi.org/10.1093/molehr/gaaa072.

    Article  CAS  PubMed  Google Scholar 

  222. Velazquez MA, Sheth B, Smith SJ, Eckert JJ, Osmond C, Fleming TP. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochim Biophys Acta Mol Basis Dis. 2018;1864(2):590–600. https://doi.org/10.1016/j.bbadis.2017.11.020.

    Article  CAS  PubMed  Google Scholar 

  223. Jia Y, Liu W, Bai D, Zhang Y, Li Y, Liu Y, et al. Melatonin supplementation in the culture medium rescues impaired glucose metabolism in IVF mice offspring. J Pineal Res. 2022;72(1):e12778. https://doi.org/10.1111/jpi.12778.

    Article  CAS  PubMed  Google Scholar 

  224. Berger JJ. Primum non nocere: are we closer to saying that the trophectoderm biopsy does no harm? Fertil Steril. 2019;112(1):35–6. https://doi.org/10.1016/j.fertnstert.2019.04.009.

    Article  PubMed  Google Scholar 

  225. Tocci A. The unknown human trophectoderm: implication for biopsy at the blastocyst stage. J Assist Reprod Genet. 2020;37(11):2699–711. https://doi.org/10.1007/s10815-020-01925-0.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Makhijani R, Bartels CB, Godiwala P, Bartolucci A, DiLuigi A, Nulsen J, et al. Impact of trophectoderm biopsy on obstetric and perinatal outcomes following frozen-thawed embryo transfer cycles. Hum Reprod. 2021;36(2):340–8. https://doi.org/10.1093/humrep/deaa316.

    Article  CAS  PubMed  Google Scholar 

  227. Zheng W, Yang C, Yang S, Sun S, Mu M, Rao M, et al. Obstetric and neonatal outcomes of pregnancies resulting from preimplantation genetic testing: a systematic review and meta-analysis. Hum Reprod Update. 2021;27(6):989–1012. https://doi.org/10.1093/humupd/dmab027.

    Article  PubMed  Google Scholar 

  228. Eldar-Geva T, Srebnik N, Altarescu G, Varshaver I, Brooks B, Levy-Lahad E, et al. Neonatal outcome after preimplantation genetic diagnosis. Fertil Steril. 2014;102(4):1016–21. https://doi.org/10.1016/j.fertnstert.2014.06.023.

    Article  PubMed  Google Scholar 

  229. Sunkara SK, Antonisamy B, Selliah HY, Kamath MS. Pre-term birth and low birth weight following preimplantation genetic diagnosis: analysis of 88 010 singleton live births following PGD and IVF cycles. Hum Reprod. 2017;32(2):432–8. https://doi.org/10.1093/humrep/dew317.

    Article  PubMed  Google Scholar 

  230. Zmuidinaite R, Sharara FI, Iles RK. Current advancements in noninvasive profiling of the embryo culture media secretome. Int J Mol Sci. 2021;22(5):2513. https://doi.org/10.3390/ijms22052513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16–42. https://doi.org/10.1093/humupd/dmz033.

    Article  CAS  PubMed  Google Scholar 

  232. Katagiri Y, Tamaki Y. Genetic counseling prior to assisted reproductive technology. Reprod Med Biol. 2021;20(2):133–43. https://doi.org/10.1002/rmb2.12361.

    Article  PubMed  Google Scholar 

  233. Zhu Y, Yan H, Tang M, Fu Y, Hu X, Zhang F, et al. Impact of maternal prepregnancy body mass index on cognitive and metabolic profiles of singletons born after in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2019;112(6):1094-102.e2. https://doi.org/10.1016/j.fertnstert.2019.08.054.

    Article  CAS  PubMed  Google Scholar 

  234. Young BE, Levek C, Reynolds RM, Rudolph MC, MacLean P, Hernandez TL, et al. Bioactive components in human milk are differentially associated with rates of lean and fat mass deposition in infants of mothers with normal vs. elevated BMI. Pediatr Obes. 2018;13(10):598–606. https://doi.org/10.1111/ijpo.12394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Baird DT, Cnattingius S, Collins J, Evers JLH, Glasier A, Heitmann BL, et al. Nutrition and reproduction in women. Hum Reprod Update. 2006;12(3):193–207. https://doi.org/10.1093/humupd/dmk003.

    Article  Google Scholar 

  236. Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15(7):784–90. https://doi.org/10.1038/sj.ejhg.5201832.

    Article  CAS  PubMed  Google Scholar 

  237. Bider-Canfield Z, Martinez MP, Wang X, Yu W, Bautista MP, Brookey J, et al. Maternal obesity, gestational diabetes, breastfeeding and childhood overweight at age 2 years. Pediatr Obes. 2017;12(2):171–8. https://doi.org/10.1111/ijpo.12125.

    Article  CAS  PubMed  Google Scholar 

  238. Van Mason J, Portnoy JM. Immunologic strategies for prevention of asthma. J Aller Cl Imm-Pract. 2020;8(3):834–47. https://doi.org/10.1016/j.jaip.2019.11.029.

    Article  Google Scholar 

  239. Levine SZ, Kodesh A, Viktorin A, Smith L, Uher R, Reichenberg A, et al. Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiat. 2018;75(2):176–84. https://doi.org/10.1001/jamapsychiatry.2017.4050.

    Article  Google Scholar 

  240. Schmidt RJ, Iosif AM, Guerrero Angel E, Ozonoff S. Association of maternal prenatal vitamin use with risk for autism spectrum disorder recurrence in young siblings. JAMA Psychiat. 2019;76(4):391–8. https://doi.org/10.1001/jamapsychiatry.2018.3901.

    Article  Google Scholar 

  241. Rimoldi SF, Sartori C, Rexhaj E, Bailey DM, de Marchi SF, McEneny J, et al. Antioxidants improve vascular function in children conceived by assisted reproductive technologies: a randomized double-blind placebo-controlled trial. Eur J Prev Cardiol. 2015;22(11):1399–407. https://doi.org/10.1177/2047487314535117.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Li Jin, Xianhua Lin, and Chenming Xu for participating in the discussion of this article.

Funding

This work was supported by the National Key Research and Development Program of China (2021YFC2700701, 2022YFC2703505), the National Natural Science Foundation of China (8211101588, 82088102, 82171686), the Program of Shanghai Academic Research Leader (20XD1424100), the Natural Science Foundation of Shanghai (20ZR1463100), the Clinical research program of Shanghai Municipal Health Commission (202340222), the Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01), the Clinical Research Plan of Shanghai Shenkang Hospital Development Center (SHDC2023CRD001, SHDC2020CR1008A), the Outstanding Youth Medical Talents of Shanghai Rising Stars of Medical Talent Youth Development Program, the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-064), the Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), the Shanghai Urogenital System Diseases Research Center (2022ZZ01012), the Key Discipline Construction Project(2023-2025)of Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai (GWVI-11.1-35) and Shanghai Frontiers Science Research Base of Reproduction and Development.

Author information

Authors and Affiliations

Authors

Contributions

Y.T.W. and H.F.H. conceived the review design and revised the drafts. Y.T.W., S.W.Z., Q.Y.L, R.Y.M., and J.Y., analyzed and interpreted the literature and drafted the manuscript. Y.T.W. and H.F.H. coordinated the study and critically revised the manuscript for important intellectual content to its final version. All authors commented on the drafts and approved the final draft.

Corresponding authors

Correspondence to Yanting Wu or Hefeng Huang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Luo, Q., Meng, R. et al. Long-term health risk of offspring born from assisted reproductive technologies. J Assist Reprod Genet 41, 527–550 (2024). https://doi.org/10.1007/s10815-023-02988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02988-5

Keywords

Navigation