Skip to main content
Log in

Cadmium, Lead, and Selenium in Cord Blood and Thyroid Hormone Status of Newborns

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd), lead (Pb), and selenium (Se) concentrations in cord whole blood, sampled from 24 women at the time of delivery in a hospital in Tokyo in 2005, were determined by inductively coupled plasma mass spectrometry with a reaction cell. Signal enhancement caused by nonspectroscopic interference for Se was evident and the standard addition technique was essential for correcting the interference. Median concentration in cord bloods was 0.20 ng/g, 6.7 ng/g (0.67 μg/dL), and 191 ng/g for Cd, Pb and Se, respectively. Lead concentration was lower, whereas Se concentration was higher, than those reported in other countries. The trace element concentration was related to the levels of thyroid stimulating hormone (TSH) and free thyroxin (fT4) in the neonatal blood sampled at 4–6 days postpartum. A significantly negative correlation was observed between Cd concentrations in cord blood and TSH concentration in neonatal blood. The result indicated the possible effect of in utero Cd exposure on thyroid hormone status of newborns and that Cd exposure level should be assessed as a covariate in the survey on the relationship between in utero chemicals (e.g., PCBs) exposure and thyroid hormone status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jacobson JL, Jacobson SW (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Eng J Med 335:783–789

    Article  CAS  Google Scholar 

  2. Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauter PJI, Weisglas-Kuperus N (1999) Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr 134:33–41

    Article  PubMed  CAS  Google Scholar 

  3. Darvill T, Lonky E, Reihman J, Stewart P, Pagano J (2000) Prenatal exposure to PCBs and infant performance on the Fagan test of infant intelligence. Neurotoxicology 21:1029–1038

    PubMed  CAS  Google Scholar 

  4. Gladen BC, Rogan WJ (1991) Effects of perinatal polychlorinated biphenyls and dichlorodiphenyl dichloroethane on later development. J Pediatr 119:58–63

    Article  PubMed  CAS  Google Scholar 

  5. Desaulniers D, Leingartner K, Wade M, Fintelman E, Yagminas A, Foster WG (1999) Effects of acute exposure to PCBs 126 and 153 on anterior pituitary and thyroid hormones and FSH isoforms in adult Sprague Dawley male rats. Toxicol Sci 47:158–169

    Article  PubMed  CAS  Google Scholar 

  6. Mukai K, Okamura K, Tsuji H, Kajiwara E, Watanabe D, Akagi K, Fujishima M (1987) Thyroid function in “Yusho” patients exposed to polychlorinated biphenyls (PCB). Environ Res 44:179–187

    Article  Google Scholar 

  7. Takser L, Mergler D, Baldwin M, de Grosbois S, Smargiassi A, Lafond J (2005) Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environ Health Perspect 113:1039–1044

    Article  PubMed  CAS  Google Scholar 

  8. Otake T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, Ikegami M, Suzuki E, Naruse H, Yamanaka T, Shibuya N, Yasumizu T, Kato N (in press) Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. Environ Res

  9. Köhrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  PubMed  CAS  Google Scholar 

  10. Mehta J, Dhawan D, Mehta M, Kumar R, Chopra JS, Sharma RR (1986) Effect of dietary cadmium intake on serum thyroxine and triiodothyronine concentrations in rhesus monkeys. Toxicol Lett 34:85–88

    Article  PubMed  CAS  Google Scholar 

  11. Okamoto K, Fuwa K (1984) Low-contamination digestion bomb method using Teflon double vessel for biological materials. Anal Chem 56:1758–1760

    Article  CAS  Google Scholar 

  12. Zdankiewicz DD, Fasching JL (1978) Analysis of whole blood by neutron activation: a search for a biochemical indicator of neoplasia. Anal Chem 22:1361–1365

    Google Scholar 

  13. Goossens J, Vanhaecke F, Moens L, Dams R (1993) Elimination of interferences in the determination of arsenic and selenium in biological samples by inductively coupled plasma mass spectrometry. Anal Chim Acta 280:137–143

    Article  CAS  Google Scholar 

  14. Larsen EH, Stürup S (1994) Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J Anal At Spectrom 9:1099–1105

    Article  CAS  Google Scholar 

  15. Stürup S, Hayes RB, Peters U (2005) Development and application of a simple routine method for the determination of selenium in serum by octapole reaction system ICPMS. Anal Bioanal Chem 381:686–694

    Article  PubMed  CAS  Google Scholar 

  16. Walker JB, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, Corriveau A, Weber J-P, LeBlanc A, Walker M, Donaldson SG, Van Oostdam J (2006) Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res 100:295–318

    Article  PubMed  CAS  Google Scholar 

  17. Vigeh M, Yokoyama K, Ramezanzadeh F, Dahaghin M, Sakai T, Morita Y, Kitamura F, Sato H, Kobayashi Y (2006) Lead and other trace metals in preeclampsia: A case-control study in Tehran, Iran. Sci Total Environ 100:268–275

    CAS  Google Scholar 

  18. Takser L, Mergler D, Lafond J (2005) Very low level environmental exposure to lead and prolactin levels during pregnancy. Neurotoxicol Teratol 27:505

    Article  PubMed  CAS  Google Scholar 

  19. Després C, Beuter A, Richer F, Poitras K, Veilleux A, Ayotte P, Dewailly É, Saint-Amour D, Muckle G (2005) Neuromotor functions in Inuit preschool children exposed to Pb, PCBs, and Hg. Neurotoxicol Teratol 27:245–257

    Article  PubMed  CAS  Google Scholar 

  20. Harville EW, Hertz-Picciotto I, Schramm M, Watt-Morse M, Chantala K, Osterloh J, Parsons PJ, Rogan W (2005) Factors influencing the difference between maternal and cord blood lead. Occup Environ Med 62:263–269

    Article  PubMed  CAS  Google Scholar 

  21. Audrey S, Takser L, André M, Martin S, Donna M, Geneviève S-A, Philippe B, Georgette H, Guy H (2002) A comparative study of manganese and lead levels in human umbilical cords and maternal blood from two urban centers exposed to different gasoline additives. Sci Total Environ 290:157–164

    Article  CAS  Google Scholar 

  22. Raghunath R, Tripathi RM, Sastry VN, Krishnamoorthy TM (2000) Heavy metals in maternal and cord blood. Sci Total Environ 250:135–141

    Article  PubMed  CAS  Google Scholar 

  23. Osman K, Åkesson A, Berglund M, Bremme K, Schütz A, Ask K, Vahter M (2000) Toxic and essential elements in placentas of Swedish women. Clin Biochem 33:131–138

    Article  PubMed  CAS  Google Scholar 

  24. Galicia-García V, Rojas-López M, Rojas R, Olaiz G, Ríos C (1997) Cadmium levels in maternal, cord and newborn blood in Mexico city. Toxicol Lett 91:57–61

    Article  PubMed  Google Scholar 

  25. Ong CN, Chia SE, Foo SC, Ong HY, Tsakok M, Liouw P (1993) Concentrations of heavy metals in maternal and umbilical cord blood. Biometals 6:61–66

    Article  PubMed  CAS  Google Scholar 

  26. Scramel P, Hasse S, Ovcar-Pavlu J (1988) Selenium, cadmium, lead and mercury concentrations in human breast milk, in placenta, maternal blood, and the blood of the newborn. Biol Trace Elem Res 15:111–124

    Article  Google Scholar 

  27. Rabinowitz M, Finch H (1984) Cadmium content of umbilical cord blood. Environ Res 34:120–122

    Article  PubMed  CAS  Google Scholar 

  28. Dobrzynski W, Trafikowska U, Trafikowska A, Pilecki A, Szymanski W, Zachara BA (1998) Decreased selenium concentration in maternal and cord blood in preterm compared with term delivery. Analyst 123:93–97

    Article  PubMed  CAS  Google Scholar 

  29. Korpela H, Loueniva R, Yrjänheikki E, Kauppila A (1984) Selenium concentration in maternal and umbilical cord blood, placenta and amniotic membranes. Int J Vit Nutr Res 54:257–261

    CAS  Google Scholar 

  30. IPCS (1986) Environmental Health Criteria 58 Selenium. WHO, Geneva

    Google Scholar 

  31. Yoshinaga J (2003) Organolead compounds in the environment. In: Craig PJ (ed) Organometallic Compounds in the Environment, 2nd edn. Wiley, Chichester, pp 151–194

    Google Scholar 

  32. Yoshida K, Sugihira N, Suzuki M, Sakurada T, Saito S, Yoshinaga K, Saito H (1987) Effect of cadmium on T4 outer ring monodeiodination by rat liver. Environ Res 42:400–405

    Article  PubMed  CAS  Google Scholar 

  33. Gupta P, Kar A (1999) Cadmium induced thyroid dysfunction in chicken: hepatic type I iodothyronine 5’-monodeiodinase activity and role of lipid peroxidation. Comp Biochem Physiol C 123:39–44

    PubMed  CAS  Google Scholar 

  34. Nishijo M, Nakagawa H, Morikawa Y, Tabata M, Senma M, Miura K, Tsuritani I, Honda R, Kido T, Teranishi H, Kono S, A study of thyroid hormone levels of inhabitants of the cadmium-polluted Kakehashi river basin. Nippon Eiseigaku Zasshi 49:598–605 [in Japanese with English abstract]

  35. Osius N, Karamaus W, Kruse H, Witten J (1999) Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environ Health Perspect 107:843–849

    Article  PubMed  CAS  Google Scholar 

  36. Lafuente A, Blanco A, Marquez N, Alvarez-Demanuel E, Esquifino AL (1997) Effects of acute and subchronic cadmium administration on pituitary hormone secretion in rat. Rev Esp Fisiol 53:265-269

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yoshinaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iijima, K., Otake, T., Yoshinaga, J. et al. Cadmium, Lead, and Selenium in Cord Blood and Thyroid Hormone Status of Newborns. Biol Trace Elem Res 119, 10–18 (2007). https://doi.org/10.1007/s12011-007-0057-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0057-1

Keywords

Navigation