Skip to main content
Log in

Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum arvense Silver Nanoparticles

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to synthesize and characterize silver nanoparticles (AgNPs) by green synthesis from Equisetum arvense (Ea) extracts and to investigate their cytotoxicity, antibiofilm activity, and α-glucosidase enzyme inhibition. Diverse characterization techniques were applied to verify the production of nanoparticles. SEM examination confirmed that the size of nanoparticles is in the range of 40–60 nm. Also, interactions between silver and natural compounds of plant extract were confirmed through FT-IR and EDX analyses. It was determined that Equisetum arvense silver nanoparticles had antibiofilm activity against three different clinical strains with high biofilm-forming ability. AgNPs reduced the biofilm-forming capacity of clinical A. baumannii isolate with strong biofilm-forming capacity by approximately twofold, while the capacity of clinical K.pneumonaie and E.coli isolates decreased by 1.5 and 1.2 fold, respectively. The α-glucosidase enzyme inhibition potential of the AgNPs, which is determined as 93.50%, was higher than the plant extract with, and the α- 30.37%. MTT was performed to assess whether incubation of nanoparticles with A549 and ARPE-19 cell lines affected their viability, and a dramatic reduction in cell growth inhibition of both A549 and ARPE-19 cells was observed. It has been shown that A549 cells treated with 200 and 150 µg/mL nanoparticles had less cell proliferation compared to control cells at 24-h and 48-h incubation time. According to these results, Ea-derived AgNPs appear to have potential anticancer activity against A549 cancer cells. Investigating the effects of green synthesis nanoparticles on microbial biofilm and various tumors may be important for developing new therapies. The outcomes of this study have showed that Ea-AgNPsmay have a high potential both in the treatment of pathogenic strains that form biofilms, as well as in anticancer therapy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology. 25;12, 636588. https://doi.org/10.3389/fmicb.2021.636588. eCollection 2021

  2. Kim, M. H. (2016). Nanoparticle-based therapies for wound biofilm infection: Opportunities and challenges. IEEE Transactions on Nanobioscience, 15, 294–304. https://doi.org/10.1109/TNB.2016.2527600

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krishnaraj, C., Ji, B. J., & HarperYun, SLSoon Il. (2016). Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens. Bioprocess and Biosystems Engineering, 39, 759–772. https://doi.org/10.1007/s00449-016-1556-2

    Article  CAS  PubMed  Google Scholar 

  4. Das, P., & Karankar, V. S. (2019). New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. Journal of Microbiological Methods, 167, 105766. https://doi.org/10.1016/j.mimet.2019.105766

    Article  CAS  PubMed  Google Scholar 

  5. Bharadwaj, K. K., Rabha, B., Pati, S., Choudhury, B. K., Sarkar, T., Gogoi, S. K., Kakati, N., Baishya, D., Kari, Z. A., & Edinur, H. A. (2021). Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials (Basel), 11(8), 1999. https://doi.org/10.3390/nano11081999

    Article  CAS  PubMed  Google Scholar 

  6. Fierascu, I., Fierascu, R. C., Ungureanu, C., Draghiceanu, O. A., Soare, L. C. (2021). Application of polypodiopsida class in nanotechnology–potential towards development of more effective bioactive solutions. Antioxidants, 10(5), 748. https://doi.org/10.3390/antiox10050748

  7. Shkodenko, L., Kassirov, I., & Koshel, E. (2020). Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms., 8(10), 1545. https://doi.org/10.3390/microorganisms8101545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fulaz, S., Vitale, S., Quinn, L., & Casey, E. (2019). Nanoparticle–biofilm interactions: The role of the EPS matrix. Trends in Microbiology, 27, 915–926. https://doi.org/10.1016/j.tim.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  9. Rubey, K. M., & Brenner, J. S. (2021). Nanomedicine to fight infectious disease. Advanced Drug Delivery Reviews, 179, 113996. https://doi.org/10.1016/j.addr.2021.113996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lateef, A., Ojo, S. A., & Oladejo, S. M. (2016). Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochemistry, 51, 1406–1412.

    Article  CAS  Google Scholar 

  11. Rajendran, R., Pullani, S., Thavamurugan, S., Radhika, R., & Prabha, A. L. (2022). Green fabrication of silver nanoparticles from Salvia species extracts: Characterization and anticancer activities against A549 human lung cancer cell line. Applied Nanoscience. https://doi.org/10.1007/s13204-021-02130-w

    Article  Google Scholar 

  12. Çimen, M., & Düzgün Özad, A. (2021). Antibiotic induced biofilm formation of novel multidrug resistant Acinetobacter baumannii ST2121 clone. Acta Microbiologica et Immunologica Hungarica, 68(2), 80–86. https://doi.org/10.1556/030.2020.01240

    Article  CAS  PubMed  Google Scholar 

  13. Mastoor, S., Nazim, F., Rizwan-Ul-Hasan, S., Ahmed, K., Khan, S., Ali, S. N., & Abidi, S. H. (2022). Analysis of the antimicrobial and anti-biofilm activity of natural compounds and their analogues against Staphylococcus aureus isolates. Molecules, 27(20), 6874. https://doi.org/10.3390/molecules27206874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, Z., Yin, Y., Zhao, W., Liu, J., & Chen, F. (2012). Anti-diabetic activity peptides from albumin against a-glucosidase and a-amylase. Food Chemistry, 135, 2078–2085. https://doi.org/10.1016/j.foodchem.2012.06.088

    Article  CAS  PubMed  Google Scholar 

  15. Ekşi, S., Ejder, N., Yılmaz, F., Ertürk, A., & Sandallı, C. (2016). PaCaHa inhibits proliferation of human cancer cells in vitro. Turkish Journal of Medical Sciences, 46, 872–876. https://doi.org/10.3906/sag-1503-142

    Article  CAS  PubMed  Google Scholar 

  16. Mossmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  17. Batir-Marin, D., Mircea, C., Boev, M., Burlec, A. F., Corciova, A., Fifere, A., Iacobescu, A., Cioanca, O., Verestiuc, L., & Hancianu, M. (2021). In vitro antioxidant, antitumor and photocatalytic activities of silver nanoparticles synthesized using equisetum species: A green approach. Molecules, 6(23), 7325. https://doi.org/10.3390/molecules26237325

    Article  CAS  Google Scholar 

  18. Ramalingam, J., Vaali-Mohammed, M. A., Al-Lohedan, H. A., & Appaturi, J. N. (2017). Synthesis and bio-physical characterization of Silver nanoparticle and Ag-mesoporous MnO2 nanocomposite for anti-microbial and anti-cancer activity. Journal of Molecular Liquids, 243, 348–357. https://doi.org/10.1016/j.molliq.2017.08.037

    Article  CAS  Google Scholar 

  19. Das, G., Kumar Patra, J., & Shin, H. S. (2020). Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Materials Science & Engineering C, 114, 111011. https://doi.org/10.1016/j.msec.2020.111011

    Article  CAS  Google Scholar 

  20. Omidia, S., Sedaghatb, S., Tahvildaria, K., Derakhshia, P., & Motiee, F. (2018). Biosynthesis of silver nanoparticles with adiantum capillus-veneris L leaf extract in the batch process and assessment of antibacterial activity. Green Chemistry Letters And Reviews, 11, 544–551. https://doi.org/10.1080/17518253.2018.1546410

    Article  CAS  Google Scholar 

  21. Miljković, M., Lazić, V., Davidović, S., Milivojević, A., Papan, J., Fernandes, M. M., Lanceros-Mendez, S., Phillip Ahrenkiel, S., & Nedeljković, J. M. (2020). Selective antimicrobial performance of biosynthesized silver nanoparticles by horsetail extract against E. coli. Journal of Inorganic and Organometallic Polymers and Materials, 30(2598), 2607. https://doi.org/10.1007/s10904-019-01402-x

    Article  CAS  Google Scholar 

  22. Skóra, B., Krajewska, U., Nowak, A., Dziedzi, A., Barylyak, A., & Kus-Liśkiewicz, M. (2021). Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Scientifc Reports, 11, 13451. https://doi.org/10.1038/s41598-021-92812-w

    Article  CAS  ADS  Google Scholar 

  23. Wintachai, P., Paosen, S., Yupanqui, C. T., & Voravuthikunchai, S. P. (2019). Silver nanoparticles synthesized with Eucalyptus critriodora ethanol leaf extract stimulate antibacterial activity against clinically multidrug-resistant Acinetobacter baumannii isolated from pneumonia patients. Microbial Pathogenesis, 126, 245–257. https://doi.org/10.1016/j.micpath.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  24. de Lacerda, C. D., de Souza, J. B., Bueno, E. V., Medeiros, S. M. F. R. D. S., Cavalcanti, I. D. L., & Cavalcanti, I. M. F. (2021). Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Brazilian Journal of Microbiology, 52, 267–278. https://doi.org/10.1007/s42770-020-00406-x

    Article  CAS  Google Scholar 

  25. Hetta, H. F., Al-Kadmy, I. M. S., Khazaal, S. S., Abbas, S., Suhail, A., El-Mokhtar, M. A., Ellah, N. H. A., Ahmed, E. A., Abd-Ellatief, R. B., El-Masry, E. A., Batiha, G. E., Elkady, A. A., Mohamed, N. A., & Algammal, A. M. (2022). Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Science and Reports, 11, 10751. https://doi.org/10.1038/s41598-021-90208-4

    Article  CAS  ADS  Google Scholar 

  26. Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19. https://doi.org/10.4103/0973-7847.79096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balan, K., Qing, W., Wang, Y., Liu, X., Palvannan, T., Wang, Y., Ma, F., & Zhang, Y. (2016). Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Advances, 6(46), 40162–40168. https://doi.org/10.1039/C5RA24391B

    Article  CAS  ADS  Google Scholar 

  28. Jini, D., & Sharmila, S. (2020). Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Materials Today: Proceedings, 22, 432–438.

    CAS  Google Scholar 

  29. Singh, N., Chatterjee, A., Chakraborty, K., Chatterjee, S., & Abraham, J. (2016). Cytotoxic effect on MG-63 cell line and antimicrobial and antioxidant properties of silver nanoparticles synthesized with seed extracts of Capsicum sp. Records of Natural Products, 10, 47–57.

    CAS  Google Scholar 

  30. Castro-Aceituno, V., Abbai, R., Moon, S. S., Ahn, S., Mathiyalagan, R., Kim, Y. J., Kim, Y. J., & Yang, D. C. (2017). Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line. Biomedicine & Pharmacotherapy, 93, 995–1003. https://doi.org/10.1016/j.biopha.2017.07.040

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AÖD and ZA synthesis and characterization experiments of the nanoparticle; they also performed antibiofilm activity assays and enzyme activity testing. ŞA analyzed the nanoparticle characterization. Anticancer experiments by N. All authors contributed to the study conception, design, and to the writing of the article.

Corresponding author

Correspondence to Azer Özad Düzgün.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akar, Z., Akay, S., Ejder, N. et al. Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum arvense Silver Nanoparticles. Appl Biochem Biotechnol 196, 909–922 (2024). https://doi.org/10.1007/s12010-023-04587-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04587-7

Keywords

Navigation