Skip to main content

Advertisement

Log in

Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acute ischemic stroke (AIS) is characterized by a sudden blockage of one of the main arteries supplying blood to the brain, leading to insufficient oxygen and nutrients for brain cells to function properly. Unfortunately, metabolic alterations in the biofluids with AIS are still not well understood. In this study, we performed high-throughput target metabolic analysis on 44 serum samples, including 22 from AIS patients and 22 from healthy controls. Multiple-reaction monitoring analysis of 180 common metabolites revealed a total of 29 metabolites that changed significantly (VIP > 1, p < 0.05). Multivariate statistical analysis unraveled a striking separation between AIS patients and healthy controls. Comparing the AIS group with the control group, the contents of argininosuccinic acid, beta-D-glucosamine, glycerophosphocholine, L-abrine, and L-pipecolic acid were remarkably downregulated in AIS patients. Twenty-nine out of 112 detected metabolites enriched in disturbed metabolic pathways, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, lysine degradation, phenylalanine, tyrosine, and tryptophan biosynthesis metabolic pathways. Collectively, these results will provide a sensitive, feasible diagnostic prospect for AIS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding authors on reasonable request.

Abbreviations

AIS:

Acute ischemic stroke

CT:

Computed tomography

CTA:

Computed tomography angiography

MRI:

Magnetic resonance imaging

MRA:

Magnetic resonance angiography

MRM:

Multiple reaction monitoring

UPLC:

Ultra performance liquid chromatography

MS:

Mass spectrometry

NIHSS:

National Institutes of Health Stroke Scale

QC:

Quality control

PCA:

Principal component analysis

OPLS-DA:

Orthogonal projections to latent structures-discriminant analysis

VIP:

Variable importance in projection

ROC:

Receiver operating characteristic

AUC:

Area under curve

PtdCho:

Phosphatidylcholine

GroPCho:

Glycerophosphocholine

L-PA:

L-pipecolic acid

References

  1. Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M., … Martin, S. S. (2022). Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation, 145, e153–e639.

    Article  PubMed  Google Scholar 

  2. Collaborators, G. B. D. S. (2021). Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology, 20, 795–820.

    Article  Google Scholar 

  3. Jiang, B., Wang, W. Z., Chen, H., Hong, Z., Yang, Q. D., Wu, S. P., Du, X. L., & Bao, Q. J. (2006). Incidence and trends of stroke and its subtypes in China: Results from three large cities. Stroke, 37, 63–68.

    Article  PubMed  Google Scholar 

  4. Krishnamurthi, R. V., Feigin, V. L., Forouzanfar, M. H., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L. M., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., Naghavi, M., … Global Burden of Diseases, I. R. F. S. and Group, G. B. D. S. E. (2013). Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob Health, 1, e259-281.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andersen, K. K., Olsen, T. S., Dehlendorff, C., & Kammersgaard, L. P. (2009). Hemorrhagic and ischemic strokes compared: Stroke severity, mortality, and risk factors. Stroke, 40, 2068–2072.

    Article  PubMed  Google Scholar 

  6. Salvadori, E., Papi, G., Insalata, G., Rinnoci, V., Donnini, I., Martini, M., Falsini, C., Hakiki, B., Romoli, A., Barbato, C., Polcaro, P., Casamorata, F., Macchi, C., Cecchi, F. and Poggesi, A. (2020) Comparison between ischemic and hemorrhagic strokes in functional outcome at discharge from an intensive rehabilitation hospital. Diagnostics (Basel), 11.

  7. Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., & Tirschwell, D. L. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 50, e344–e418.

    Article  PubMed  Google Scholar 

  8. Hurford, R., Sekhar, A., Hughes, T. A. T., & Muir, K. W. (2020). Diagnosis and management of acute ischaemic stroke. Practical Neurology, 20, 304–316.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Davalos, A., Guidetti, D., Larrue, V., Lees, K. R., Medeghri, Z., Machnig, T., Schneider, D., von Kummer, R., Wahlgren, N., Toni, D., & Investigators, E. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. New England Journal of Medicine, 359, 1317–1329.

    Article  CAS  PubMed  Google Scholar 

  10. Jovin, T. G., Chamorro, A., Cobo, E., de Miquel, M. A., Molina, C. A., Rovira, A., San Roman, L., Serena, J., Abilleira, S., Ribo, M., Millan, M., Urra, X., Cardona, P., Lopez-Cancio, E., Tomasello, A., Castano, C., Blasco, J., Aja, L., Dorado, L., … Investigators, R. T. (2015). Thrombectomy within 8 hours after symptom onset in ischemic stroke. New England Journal of Medicine, 372, 2296–2306.

    Article  CAS  PubMed  Google Scholar 

  11. Latchaw, R. E., Alberts, M. J., Lev, M. H., Connors, J. J., Harbaugh, R. E., Higashida, R. T., Hobson, R., Kidwell, C. S., Koroshetz, W. J., Mathews, V., Villablanca, P., Warach, S., Walters, B., American Heart Association Council on Cardiovascular, R., Intervention, S. C. and the Interdisciplinary Council on Peripheral Vascular, D. (2009). Recommendations for imaging of acute ischemic stroke: A scientific statement from the American Heart Association. Stroke, 40, 3646–3678.

    Article  PubMed  Google Scholar 

  12. Boers, A. M. M., Sales Barros, R., Jansen, I. G. H., Berkhemer, O. A., Beenen, L. F. M., Menon, B. K., Dippel, D. W. J., van der Lugt, A., van Zwam, W. H., Roos, Y., van Oostenbrugge, R. J., Slump, C. H., Majoie, C., Marquering, H. A., investigators, M. C. (2018). Value of quantitative collateral scoring on CT angiography in patients with acute ischemic stroke. AJNR. American Journal of Neuroradiology, 39, 1074–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, Y., Lee, S., Abdelkhaleq, R., Lopez-Rivera, V., Navi, B., Kamel, H., Savitz, S. I., Czap, A. L., Grotta, J. C., McCullough, L. D., Krause, T. M., Giancardo, L., Vahidy, F. S., & Sheth, S. A. (2021). Utilization and availability of advanced imaging in patients with acute ischemic stroke. Circulation. Cardiovascular Quality and Outcomes, 14, e006989.

    Article  PubMed  Google Scholar 

  14. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  16. Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G. J., & Siuzdak, G. (2012). An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology, 30, 826–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, D., Kong, J., Wu, J., Wang, X., & Lai, M. (2017). GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neuroscience Letters, 642, 7–13.

    Article  CAS  PubMed  Google Scholar 

  18. Yu, F., Li, X., Feng, X., Wei, M., Luo, Y., Zhao, T., Xiao, B., & Xia, J. (2021). Phenylacetylglutamine, a novel biomarker in acute ischemic stroke. Front Cardiovasc Med, 8, 798765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sidorov, E. V., Xu, C., Garcia-Ramiu, J., Blair, A., Ortiz-Garcia, J., Gordon, D., Chainakul, J., & Sanghera, D. K. (2022). Global metabolomic profiling reveals disrupted lipid and amino acid metabolism between the acute and chronic stages of ischemic stroke. Journal of Stroke and Cerebrovascular Diseases, 31, 106320.

    Article  PubMed  Google Scholar 

  20. Kimberly, W. T., Wang, Y., Pham, L., Furie, K. L., & Gerszten, R. E. (2013). Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke. Stroke, 44, 1389–1395.

    Article  CAS  PubMed  Google Scholar 

  21. Choi, S. H., Arai, A. L., Mou, Y., Kang, B., Yen, C. C., Hallenbeck, J., & Silva, A. C. (2018). Neuroprotective effects of MAGL (monoacylglycerol lipase) inhibitors in experimental ischemic stroke. Stroke, 49, 718–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geng, J., Zhang, Y., Li, S., Li, S., Wang, J., Wang, H., Aa, J., & Wang, G. (2019). Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. Journal of Proteome Research, 18, 57–68.

    CAS  PubMed  Google Scholar 

  23. Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17, 451–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, L., Liu, J., Zhang, W., Wang, T., Zhang, N., Lee, Y. H., & Lu, H. (2020). Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism. Mass Spectrometry Reviews, 39, 417–433.

    Article  CAS  PubMed  Google Scholar 

  25. Rinschen, M. M., Ivanisevic, J., Giera, M., & Siuzdak, G. (2019). Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology, 20, 353–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50, D622–D631.

    Article  CAS  PubMed  Google Scholar 

  27. Wei, R., Li, G., & Seymour, A. B. (2010). High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry, 82, 5527–5533.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng, F., Zhao, X., Zeng, Z., Wang, L., Lv, W., Wang, Q., & Xu, G. (2020). Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry. Nature Protocols, 15, 2519–2537.

    Article  CAS  PubMed  Google Scholar 

  29. Gaugler, S., Rykl, J., Wegner, I., von Daniken, T., Fingerhut, R., & Schlotterbeck, G. (2018). Extended and fully automated newborn screening method for mass spectrometry detection. Int J Neonatal Screen, 4, 2.

    Article  PubMed  Google Scholar 

  30. Cai, Z., Zhang, Q., Xia, Z., Zheng, S., Zeng, L., Han, L., Yan, J., Ke, P., Zhuang, J., Wu, X., & Huang, X. (2020). Determination of serum 25-hydroxyvitamin D status among population in southern China by a high accuracy LC-MS/MS method traced to reference measurement procedure. Nutrition & Metabolism (London), 17, 8.

    Article  CAS  Google Scholar 

  31. Lin, L., Ding, Y., Wang, Y., Wang, Z., Yin, X., Yan, G., Zhang, L., Yang, P., & Shen, H. (2017). Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology, 66, 432–448.

    Article  CAS  PubMed  Google Scholar 

  32. Nemet, I., Saha, P. P., Gupta, N., Zhu, W., Romano, K. A., Skye, S. M., Cajka, T., Mohan, M. L., Li, L., Wu, Y., Funabashi, M., Ramer-Tait, A. E., Naga Prasad, S. V., Fiehn, O., Rey, F. E., Tang, W. H. W., Fischbach, M. A., DiDonato, J. A., & Hazen, S. L. (2020). A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell, 180(862–877), e822.

    Google Scholar 

  33. Liu, L., Feng, R., Guo, F., Li, Y., Jiao, J., & Sun, C. (2015). Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects. Diabetes Research and Clinical Practice, 108, 84–93.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, S., Jang, W. J., Yu, H., Kim, J., Lee, S. K., Jeong, C. H. and Lee, S. (2020) Revealing metabolic perturbation following heavy methamphetamine abuse by human hair metabolomics and network analysis. Int J Mol Sci, 21.

  35. Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. E., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49, W388–W396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holthuis, J. C., & Menon, A. K. (2014). Lipid landscapes and pipelines in membrane homeostasis. Nature, 510, 48–57.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez-Murray, J. P., & McMaster, C. R. (2005). Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway. Journal of Biological Chemistry, 280, 38290–38296.

    Article  CAS  PubMed  Google Scholar 

  38. Winrow, C. J., Hemming, M. L., Allen, D. M., Quistad, G. B., Casida, J. E., & Barlow, C. (2003). Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nature Genetics, 33, 477–485.

    Article  CAS  PubMed  Google Scholar 

  39. Muhlig-Versen, M., da Cruz, A. B., Tschape, J. A., Moser, M., Buttner, R., Athenstaedt, K., Glynn, P., & Kretzschmar, D. (2005). Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. Journal of Neuroscience, 25, 2865–2873.

    Article  PubMed  Google Scholar 

  40. Pena, I. A., Marques, L. A., Laranjeira, A. B., Yunes, J. A., Eberlin, M. N., & Arruda, P. (2016). Simultaneous detection of lysine metabolites by a single LC-MS/MS method: Monitoring lysine degradation in mouse plasma. Springerplus, 5, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Perez-Garcia, F., Brito, L. F., & Wendisch, V. F. (2019). Function of L-pipecolic acid as compatible solute in corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology, 10, 340.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hallen, A., Jamie, J. F., & Cooper, A. J. (2013). Lysine metabolism in mammalian brain: An update on the importance of recent discoveries. Amino Acids, 45, 1249–1272.

    Article  CAS  PubMed  Google Scholar 

  43. Posset, R., Opp, S., Struys, E. A., Volkl, A., Mohr, H., Hoffmann, G. F., Kolker, S., Sauer, S. W., & Okun, J. G. (2015). Understanding cerebral L-lysine metabolism: The role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. Journal of Inherited Metabolic Disease, 38, 265–272.

    Article  CAS  PubMed  Google Scholar 

  44. Gerhards, N., Neubauer, L., Tudzynski, P., & Li, S. M. (2014). Biosynthetic pathways of ergot alkaloids. Toxins (Basel), 6, 3281–3295.

    Article  CAS  Google Scholar 

  45. Yu, X., Liu, Y., Xie, X., Zheng, X. D., & Li, S. M. (2012). Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus. Journal of Biological Chemistry, 287, 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  46. Herraiz, T., & Galisteo, J. (2004). Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radical Research, 38, 323–331.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Fujian Health Talent Training Project (2019–2-62), Xiamen Science and Technology Huimin Project (3502Z20184006), and Xiamen Medical and Health Technology Project (3502Z20194033, 3502Z20194028).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The methodology was performed by Biao Qi and Yanyu Zhang. Data analysis and investigation were performed by Bing Xu and Guoqiang Fei. The original manuscript was written by Biao Qi, Yanyu Zhang, and Bing Xu, while the manuscript review and editing was done by Ling Lin and Qiuping Li. Funding acquisition was gained by Biao Qi, Guoqiang Fei, and Qiuping Li. Resources were prepared by Yuhao Zhang. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Ling Lin or Qiuping Li.

Ethics declarations

Ethics Approval

This article contains a metabolomic study with human subjects. Ethical approval from the Research Ethics Committee from Xiamen Branch, Zhongshan Hospital of Fudan University was obtained.

Consent to Participate

Patient written informed consent was obtained.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, B., Zhang, Y., Xu, B. et al. Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery. Appl Biochem Biotechnol 194, 5443–5455 (2022). https://doi.org/10.1007/s12010-022-04024-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04024-1

Keywords

Navigation