Skip to main content

Advertisement

Log in

Nutritional Supplementation with Amino Acids on Bacterial Cellulose Production by Komagataeibacter intermedius: Effect Analysis and Application of Response Surface Methodology

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is a biopolymer mainly produced by acetic acid bacteria (AAB) that has several applications in the medical, pharmaceutical, and food industries. As other living organisms, AAB require sources of chemical elements and nutrients, which are essential for their multiplication and metabolite production. So, the knowledge of the nutritional needs of microorganisms that have important industrial applications is necessary for the nutrients to be supplied in the appropriate form and amount. Considering that the choice of different nutrients as nitrogen source can result in different metabolic effects, this work aimed to verify the effects of amino acid supplementation in the culture media for BC production by an AAB strain (Komagataeibacter intermedius V-05). For this, nineteen amino acids were tested, selected, and optimized through a Plackett and Burman factorial design and central composite design to determine the optimal concentrations of each required amino acid. Membranes produced under optimal conditions were characterized in relation to chemical structure and properties by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), and hydrophilic properties. Three amino acids had a significant positive effect and were required: aspartic acid (1.5 g L−1), phenylalanine (1.5 g L−1), and serine (3.0 g L−1). Conversely, all sulfur and positively charged amino acids had a negative effect and reduced the production yield. After optimization and validation steps, a production level of 3.02 g L−1 was achieved. Membranes produced from optimized media by this strain presented lower crystallinity index but greater thermal and hydrophilic properties than those produced from standard HS medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data supporting the conclusions of this study are included within the article and its supplementary materials file.

References

  1. Chen, S. Q., Meldrum, O. W., Liao, Q., Li, Z., Cao, X., Guo, L., Zhang, S., Zhu, J., & Li, L. (2021). The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose. Carbohydrate Polymers, 271, 118431.

    Article  CAS  PubMed  Google Scholar 

  2. Islam, M. U., Ullah, M. W., Khan, S., Shah, N., & Park, J. K. (2017). Strategies for cost-effective and enhanced production of bacterial cellulose. International Journal of Biological Macromolecules, 102, 1166–1173.

    Article  PubMed  Google Scholar 

  3. Gomes, R. J., Borges, M. F., Rosa, M. F., Castro-Gómez, R. J. H., & Spinosa, W. A. (2018). Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technology and Biotechnology, 56, 139–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. (2020). Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate Polymers, 219, 63–76.

    Article  CAS  PubMed  Google Scholar 

  6. Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H. A., Kari, Z. A., Noor, N. H. M., & Ray, R. R. (2021). Bacterial cellulose: Production, characterization and application as antimicrobial agent. International Journal of Molecular Sciences, 22, 12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jawan, R., Abbasiliasi, S., Tan, J. S., Mustafa, S., Halim, M., & Ariff, A. B. (2020). Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1. Microorganisms, 8, 1454.

    Article  CAS  PubMed Central  Google Scholar 

  8. Dinarvand, M., Rezaee, M., & Foroughi, M. (2017). Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Brazilian Journal of Microbiology, 48, 427–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, S., Pakshirajan, K., & Dasu, V. V. (2009). Development of medium for enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Applied Microbiology and Biotechnology, 84, 477–486.

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira, S. L., Caires, A. O., Borges, T. D. S., Lima, A. M., Silva, L. O., & Santos, W. N. (2017). Robustness evaluation in analytical methods optimized using experimental designs. Microchemical Journal, 131, 163–169.

    Article  CAS  Google Scholar 

  11. Wang, J., & Wan, W. (2009). Experimental design methods for fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 34, 235–244.

    Article  CAS  Google Scholar 

  12. Myers, R. H., Khuri, A. I., & Carter, W. H. (1989). Response surface methodology: 1966–l988. Technometrics, 31, 137–157.

    Google Scholar 

  13. Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using response surface methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166.

    Article  CAS  Google Scholar 

  14. Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10, 413–433.

    Article  CAS  Google Scholar 

  15. Qiu, J., Song, F., Qiu, Y., Li, X., & Guan, X. (2013). Optimization of the medium composition of a biphasic production system for mycelial growth and spore production of Aschersonia placenta using response surface methodology. Journal of Invertebrate Pathology, 112, 108–115.

    Article  CAS  PubMed  Google Scholar 

  16. Luthra, U., Singh, N., Tripathi, A., Vora, S., & Bhosle, V. (2015). Media optimization for lovastatin production by statistical approach using Aspergillus terreus by submerged fermentation. Journal of Medical Science and Clinical Research, 3, 4520–4528.

    Google Scholar 

  17. Boudrahem, F., Ziani, S., & Aissani-Benissad, F. (2019). Application of response surface methodology based on central composite design for optimization of yellow bezacryl sorption on shoe soles waste. Environmental Progress & Sustainable Energy, 38, S412–S421.

    CAS  Google Scholar 

  18. Grahovac, J., Grahovac, M., Dodić, J., Bajić, B., & Balaž, J. (2014). Optimization of cultivation medium for enhanced production of antifungal metabolites by Streptomyces hygroscopicus. Crop Protection, 65, 143–152.

    Article  CAS  Google Scholar 

  19. Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. (2017). Strategies for fermentation medium optimization: An in-depth review. Frontiers in Microbiology, 7, 2087.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nurfarahin, A. H., Mohamed, M. S., & Phang, L. Y. (2018). Culture medium development for microbial-derived surfactants production—An overview. Molecules, 23, 1049.

    Article  PubMed Central  Google Scholar 

  21. Keshk, S. M., & Sameshima, K. (2005). Evaluation of different carbon sources for bacterial cellulose production. African Journal of Biotechnology, 4, 478–482.

    CAS  Google Scholar 

  22. Mikkelsen, D., Flanagan, B. M., Dykes, G. A., & Gidley, M. J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107, 576–583.

    Article  CAS  PubMed  Google Scholar 

  23. Gomes, R. J., Faria-Tischer, P. C. S., Tischer, C. A., Constantino, L. V., Rosa, M. F., Chideroli, R. T., Pereira, U. P., & Spinosa, W. A. (2021). Komagataeibacter intermedius V-05: An acetic acid bacterium isolated from vinegar industry, with high capacity for bacterial cellulose production in soybean molasses medium. Food Technology and Biotechnology, 59, 432–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajput, K. N., Patel, K. C., & Trivedi, U. B. (2016). Screening and selection of medium components for cyclodextrin glucanotransferase production by new alkaliphile Microbacterium terrae KNR 9 using Plackett-Burman design. Biotechnology Research International, 2016, 3584807.

    PubMed  PubMed Central  Google Scholar 

  25. Du, L., Liu, S., Hao, G., Zhang, L., Zhou, M., Bao, Y., Ding, B., Sun, Q., & Zhang, G. (2021). Preparation and release profiles in vitro/vivo of galantamine pamoate loaded poly (Lactideco-Glycolide)(PLGA) microspheres. Frontiers in Pharmacology, 11, 2392.

    Article  Google Scholar 

  26. Zhang, Q., Li, Y., Xu, F., Zheng, M., Xi, X., Zhang, X., & Han, C. (2017). Optimization of submerged fermentation medium for matrine production by Aspergillus terreus, an endophytic fungus harboring seeds of Sophora flavescens, using response surface methodology. Mycobiology, 45, 90–96.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Núñez, D., Cáceres, R., Ide, W., Varaprasad, K., & Oyarzún, P. (2020). An ecofriendly nanocomposite of bacterial cellulose and hydroxyapatite efficiently removes lead from water. International Journal of Biological Macromolecules, 165, 2711–2720.

    Article  PubMed  Google Scholar 

  28. Kačuráková, M., Smith, A. C., Gidley, M. J., & Wilson, R. H. (2002). Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydrate Research, 337, 1145–1153.

    Article  PubMed  Google Scholar 

  29. Segal, L. G. J. M. A., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786–794.

    Article  CAS  Google Scholar 

  30. Barud, H., Ribeiro, C., Crespi, M., Martines, M., Dexpert-Ghys, J., Marques, R., Messaddeq, Y., & Ribeiro, S. (2007). Thermal characterization of bacterial cellulose–phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, 87, 815–818.

    Article  CAS  Google Scholar 

  31. Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., Chen, L., & Li, Z. (2015). Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. Journal of Food Science, 80, E2217–E2227.

    Article  CAS  PubMed  Google Scholar 

  32. Teixeira, S. R. Z., Reis, E. M. D., Apati, G. P., Meier, M. M., Nogueira, A. L., Garcia, M. C. F., Schneider, A. L. S., Pezzin, A. P. T., & Porto, L. M. (2019). Biosynthesis and functionalization of bacterial cellulose membranes with cerium nitrate and silver nanoparticles. Materials Research, 22, e20190054.

    Article  CAS  Google Scholar 

  33. Chandrasekaran, P. T., Bari, N. K., & Sinha, S. (2017). Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth. Cellulose, 24, 4367–4381.

    Article  CAS  Google Scholar 

  34. Kohlmeier, M. (2015). Nutrient metabolism: Structures, functions, and genes (2nd ed.). Academic Press.

    Google Scholar 

  35. Wu, G. (2009). Amino acids: Metabolism, functions, and nutrition. Amino Acids, 37, 1–17.

    Article  PubMed  Google Scholar 

  36. Leonardi, R., & Jackowski, S. (2007). Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus, 2, 1–17.

    Article  Google Scholar 

  37. Spry, C., Kirk, K., & Saliba, K. J. (2008). Coenzyme A biosynthesis: An antimicrobial drug target. FEMS Microbiology Reviews, 32, 56–106.

    Article  CAS  PubMed  Google Scholar 

  38. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (13th ed.). Pearson Education.

    Google Scholar 

  39. Sahm, F., Oezen, I., Opitz, C. A., Radlwimmer, B., Von Deimling, A., Ahrendt, T., Adams, S., Bode, H. B., Guillemin, G. J., Wick, W., & Platten, M. (2013). The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Research, 73, 3225–3234.

    Article  CAS  PubMed  Google Scholar 

  40. VanLinden, M. R., Skoge, R. H., & Ziegler, M. (2015). Discovery, metabolism and functions of NAD and NADP. Biochem., 37, 9–13.

    Article  CAS  Google Scholar 

  41. Zhu, F., Peña, M., & Bennett, G. N. (2021). Metabolic engineering of Escherichia coli for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex. Metabolic Engineering, 67, 164–172.

    Article  CAS  PubMed  Google Scholar 

  42. Pereira, L., Girardi, J. P., & Bakovic, M. (2012). Forms, crosstalks, and the role of phospholipid biosynthesis in autophagy. International Journal of Cell Biology, 2012, 931956.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Heo, M. S., & Son, H. J. (2002). Development of an optimized, simple chemically defined medium for bacterial cellulose production by Acetobacter sp. A9 in shaking cultures. Biotechnology and Applied Biochemistry, 36, 41–45.

    Article  CAS  PubMed  Google Scholar 

  44. Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G., & Lee, S. J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technology, 86, 215–219.

    Article  PubMed  Google Scholar 

  45. Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., & Yoshinaga, F. (1996). A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry, 60, 575–579.

    Article  CAS  Google Scholar 

  46. Kalam, M. A., Humayun, M., Parvez, N., Yadav, S., Garg, A., Amin, S., Sultana, Y., & Ali, A. (2007). Release kinetics of modified pharmaceutical dosage forms: A review. Continental Journal of Pharmaceutical Sciences, 1, 30–35.

    Google Scholar 

  47. Figueiredo Filho, D. B., Júnior, J. A. S., & Rocha, E. C. (2011). What is R2 all about? Leviathan, 3, 60–68.

    Article  Google Scholar 

  48. Lahiri, D., Nag, M., Mukherjee, D., Garai, S., Banerjee, R., & Ray, R. R. (2021). Recent trends in approaches for optimization of process parameters for the production of microbial cellulase from wastes. Journal of Environmental Sustainability, 4, 273–284.

    Article  CAS  Google Scholar 

  49. Lahiri, D., Nag, M., Dutta, B., Sarkar, T., & Ray, R. R. (2021). Artificial neural network and response surface methodology-mediated optimization of bacteriocin production by Rhizobium leguminosarum. Iranian Journal of Science and Technology, Transactions A: Science, 45, 1509–1517.

    Article  Google Scholar 

  50. Lahiri, D., Nag, M., Sarkar, T., Dutta, B., & Ray, R. R. (2021). Antibiofilm activity of α-amylase from Bacillus subtilis and prediction of the optimized conditions for biofilm removal by response surface methodology (RSM) and artificial neural network (ANN). Applied Biochemistry and Biotechnology, 193, 1853–1872.

    Article  CAS  PubMed  Google Scholar 

  51. Peng, S., Zheng, Y., Wu, J., Wu, Y., Ma, Y., Song, W., & Xi, T. (2012). Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide. Polymer Bulletin, 68, 415–423.

    Article  CAS  Google Scholar 

  52. Güzel, M., & Akpınar, Ö. (2020). Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. International Journal of Biological Macromolecules, 162, 1597–1604.

    Article  PubMed  Google Scholar 

  53. Li, X., Li, J., Gong, J., Kuang, Y., Mo, L., & Song, T. (2018). Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydrate Polymers, 183, 303–310.

    Article  CAS  PubMed  Google Scholar 

  54. Barud, H. S., Araújo Júnior, A. M., Santos, D. B., Assunção, R. M., Meireles, C. S., Cerqueira, D. A., Rodrigues Filho, G., Ribeiro, C. A., Messaddeq, Y., & Ribeiro, S. J. (2008). Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 471, 61–69.

    Article  CAS  Google Scholar 

  55. George, J., Ramana, K. V., Sabapathy, S. N., Jagannath, J. H., & Bawa, A. S. (2005). Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. International Journal of Biological Macromolecules, 37, 189–194.

    Article  CAS  PubMed  Google Scholar 

  56. Vasconcelos, N. F., Feitosa, J. P. A., Gama, F. M. P., Morais, J. P. S., Andrade, F. K., Souza, M. D. S. M., & Rosa, M. F. (2017). Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydrate Polymers, 155, 425–431.

    Article  CAS  PubMed  Google Scholar 

  57. Souza, E. F., Furtado, M. R., Carvalho, C. W., Freitas-Silva, O., & Gottschalk, L. M. (2020). Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. International Journal of Biological Macromolecules, 146, 285–289.

    Article  CAS  PubMed  Google Scholar 

  58. Rojo, Ú. M., Rossi, E., Cerrutti, P., Errea, M. I., & Foresti, M. L. (2021). Preparation of water insoluble carboxymethylated bacterial cellulose with maximum lead retention capacity. Journal of Polymer Research, 28, 1–7.

    Google Scholar 

  59. Molina-Ramírez, C., Cañas-Gutiérrez, A., Castro, C., Zuluaga, R., & Gañán, P. (2020). Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohydrate Polymers, 240, 116341.

    Article  PubMed  Google Scholar 

  60. Ul-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88, 596–603.

    Article  CAS  Google Scholar 

  61. Huang, H. C., Chen, L. C., Lin, S. B., Hsu, C. P., & Chen, H. H. (2010). In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresource Technology, 101, 6084–6091.

    Article  CAS  PubMed  Google Scholar 

  62. Lin, S. B., Hsu, C. P., Chen, L. C., & Chen, H. H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocoll., 23, 2195–2203.

    Article  CAS  Google Scholar 

  63. Eslahi, N., Mahmoodi, A., Mahmoudi, N., Zandi, N., & Simchi, A. (2020). Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: A review of recent advances for biomedical applications. Polymer Reviews, 60, 144–170.

    Article  CAS  Google Scholar 

  64. Mohite, B. V., & Patil, S. V. (2014). Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydrate Polymers, 106, 132–141.

    Article  CAS  PubMed  Google Scholar 

  65. Bandyopadhyay, S., Saha, N., & Sáha, P. (2018). Characterization of bacterial cellulose produced using media containing waste apple juice. Applied Biochemistry and Microbiology, 54, 649–657.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank “Laboratório de Espectroscopia (ESPEC)” and “Laboratório de Difração de Raios X (LabDRX)” of the State University of Londrina for providing equipment and assistance in the chemical characterization analyses.

Funding

We thank “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” for providing scholarship to Rodrigo J. Gomes (grant number: 142380/2017–2) and research fellowship to Wilma A. Spinosa (grant number: 307846/2020–2).

Author information

Authors and Affiliations

Authors

Contributions

Rodrigo J. Gomes: methodology, formal analysis and investigation, writing (original draft preparation); Elza I. Ida: writing (review and editing); Wilma A. Spinosa: conceptualization, funding acquisition, supervision.

Corresponding author

Correspondence to Wilma Aparecida Spinosa.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Tables S1 and S2 can be obtained as supplementary material in the online version of this article.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, R.J., Ida, E.I. & Spinosa, W.A. Nutritional Supplementation with Amino Acids on Bacterial Cellulose Production by Komagataeibacter intermedius: Effect Analysis and Application of Response Surface Methodology. Appl Biochem Biotechnol 194, 5017–5036 (2022). https://doi.org/10.1007/s12010-022-04013-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04013-4

Keywords

Navigation