Skip to main content

Advertisement

Log in

Harnessing the Keratinolytic Activity of Bacillus licheniformis Through Random Mutagenesis Using Ultraviolet and Laser Irradiations

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Keratinase is one of the important proteases, which is widely used for converting keratin of the keratinaceous materials into various value-added products. In this study, a popular keratinase producer, Bacillus licheniformis PWD-1, was exposed to ultraviolet (UV) and He–Ne laser irradiations to develop high keratinase-producing mutants. Laser irradiation showed a higher lethality of cells (94%) than UV treatment (92%), whereas laser treatment required a longer time (75 min) than UV treatment (20 min). A total of 58 mutants were selected from 176 isolates to study protein and keratinase production capability of the mutants. The highest keratin-to-casein (K:C) ratio (1.43) was exhibited by LU11 mutant, which was obtained from the combined laser and UV irradiations. The purified keratinase (65 kDa) of LU11 showed 40% yield 1.7-fold purity, while the respective value for wild enzyme was 29% and 1.3-fold. Both enzymes showed optimal activity at 55 ℃ and pH 8, with a Z value of 15.78 ℃ for LU11 and 19.72 ℃ for wild strain. The Vmax and specific constant (Kcat/Km) of the mutant enzyme were 357.17 U/ml and 33.11 min−1 mM−1, respectively, which were significantly higher than the respective values of wild enzyme (102.04 U/ml and 28.36 min−1 mM−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The dataset used and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Gong, J. S., Ye, J. P., Tao, L. Y., Su, C., Qin, J., Zhang, Y. Y., Li, H., Li, H., Xu, Z. H. and Shi, J. S. (2020) Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme and Microbial Technology, 137, 109550.

  2. Srivastava, B., Khatri, M., Singh, G. and Arya, S. K. (2020) Microbial keratinases: An overview of biochemical characterization and its eco-friendly approach for industrial applications. Journal of Cleaner Production, 252, 119847.

  3. Trung, N. T., Hung, N. M., Thuan, N. H., Canh, N. X., Schweder, T., & Jurgen, B. (2019). An auto-inducible phosphate-controlled expression system of Bacillus licheniformis. BMC Biotechnology, 19, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vidmar, B., & Vodovnik, M. (2018). Microbial keratinases: Enzymes with promising biotechnological applications. Food Technology and Biotechnology, 56, 312–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paiva, D. P. d., Oliveira, S. S. A. d., Mazotto, A. M., Vermelho, A. B. and Oliveira, S. S. d. (2019) Keratinolytic activity of Bacillus subtilis LFB-FIOCRUZ 1266 enhanced by whole-cell mutagenesis. 3 Biotech, 9.

  6. Su, C., Gong, J. S., Sun, Y. X., Qin, J., Zhai, S., Li, H., Li, H., Lu, Z. M., Xu, Z. H., & Shi, J. S. (2019). Combining pro-peptide engineering and multisite saturation mutagenesis to improve the catalytic potential of keratinase. ACS Synthetic Biology, 8, 425–433.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, M., An, Y., Zabed, H. M., Guo, Q., Yun, J., Zhang, G., Awad, F. N., Sun, W., & Qi, X. (2019). Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresource Technology, 284, 188–196.

    Article  CAS  PubMed  Google Scholar 

  8. Nandakumar, K., Keeler, W., Schraft, H., & Leung, K. T. (2006). Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant. Biotechnology and Bioengineering, 94, 793–802.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, Z., Li, N., Li, W., Li, J., Li, Z., Wang, J., & Tang, X. (2020). Laser mutagenesis of Phellinus igniarius protoplasts for the selective breeding of strains with high laccase activity. Applied Biochemistry and Biotechnology, 190, 584–600.

    Article  CAS  PubMed  Google Scholar 

  10. Ali, S. I., Gaafar, A. A., Metwally, S. A., Habba, I. E. and Abdel khalek, M. R. (2020) The reactive influences of pre-sowing He-Ne laser seed irradiation and drought stress on growth, fatty acids, phenolic ingredients, and antioxidant properties of Celosia argentea. Scientia Horticulturae, 261, 108989.

  11. Qiu, Z., He, Y., Zhang, Y., Guo, J., & Wang, L. (2018). Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress. Ecotoxicology and environmental safety, 164, 611–617.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, M., Zhu, R., Zhang, M., & Wang, S. (2014). Creation of an ethanol-tolerant Saccharomyces cerevisiae strain by 266 nm laser radiation and repetitive cultivation. Journal of Bioscience and Bioengineering, 118, 508–513.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Abdel-Rahman, M. A., Tashiro, Y., Xiao, Y., Zendo, T., Sakai, K., & Sonomoto, K. (2014). l (+) Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Advance, 4, 22013–22021.

    Article  CAS  Google Scholar 

  14. Meldrum, R. A., Botchway, S. W., Wharton, C. W., & Hirst, G. J. (2003). Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption. EMBO Reports, 4, 1144–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, X., Wong, S. L., Miller, E. S., & Shih, J. C. H. (1997). Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. Journal of Industrial Microbiology and Biotechnology, 19, 134–138.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, S. W., Hu, H. M., Shen, S. W., Takagi, H., Asano, M., & Tsai, Y. C. (1995). Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Bioscience, Biotechnology, and Biochemistry, 59, 2239–2243.

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang, Y., Jiang, G. L., & Zhu, M. J. (2020). Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochemistry, 91, 330–338.

  18. Sivaramakrishnan, R., & Incharoensakdi, A. (2017). Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresource Technology, 235, 366–370.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, H. N., Ma, H. L., Zhou, C. S., Yan, Y., Yin, X. L., & Yan, J. K. (2018). Enhanced production and antioxidant activity of endo-polysaccharides from Phellinus igniarius mutants screened by low power He-Ne laser and ultraviolet induction. Bioactive Carbohydrates and Dietary Fibre, 15, 30–36.

    Article  CAS  Google Scholar 

  20. Dong, Y., Ma, H., Zhou, C., Golly, M. K., Wu, P., Sun, L., Yagoub, A.E.-G.A., He, R., & Ye, X. (2021). Enhanced mycelium production of Phellinus igniarius (Agaricomycetes) using a He-Ne laser with pulsed light. International Journal of Medicinal Mushrooms, 23, 59–69.

    Article  PubMed  Google Scholar 

  21. Gu, C., Wang, G., Mai, S., Wu, P., Wu, J., Wang, G., Liu, H., & Zhang, J. (2017). ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Applied Microbiology and Biotechnology, 101, 2189–2199.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, G., Yang, Z., Wang, Y., Yao, M., Chen, Y., Xiao, W. and Yuan, Y. (2020) Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochemical Engineering Journal, 156, 107519.

  23. Okoroma, E. A., Garelick, H., Abiola, O. O., & Purchase, D. (2012). Identification and characterisation of a Bacillus licheniformis strain with profound keratinase activity for degradation of melanised feather. International Biodeterioration & Biodegradation, 74, 54–60.

    Article  CAS  Google Scholar 

  24. Anbu, P. (2013). Characterization of solvent stable extracellular protease from Bacillus koreensis (BK-P21A). International Journal of Biological Macromolecules, 56, 162–168.

    Article  CAS  PubMed  Google Scholar 

  25. Letourneau, F., Soussotte, V., Bressollier, P., Branland, P., & Verneuil, B. (1998). Keratinolytic activity of Streptomyces sp. S.K1–02: A new isolated strain. The Society for Applied Microbiology, 26, 77–80.

    Article  CAS  Google Scholar 

  26. Madadlou, A., O’Sullivan, S., & Sheehan, D. (2011). Fast protein liquid chromatography. Methods in Molecular Biology, 681, 439–447.

    Article  CAS  PubMed  Google Scholar 

  27. Allpress, J. D., Mountain, G., & Gowland, P. C. (2002). Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Letters in Applied Microbiology, 34, 337–342.

    Article  CAS  PubMed  Google Scholar 

  28. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  29. Bradford, M. M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  30. Jamali, S. N., Kashaninejad, M., Amirabadi, A. A., Aalami, M. and Khomeiri, M. (2018) Kinetics of peroxidase inactivation, color and temperature changes during pumpkin (Cucurbita moschata) blanching using infrared heating. LWT—Food Science and Technology.

  31. Emran, M. A., Ismail, S. A. and Hashem, A. M. (2020) Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatalysis and Agricultural Biotechnology, 26, 101631.

  32. Solaiman, E. A. M., Hegazy, W. K., & Moharam, M. E. (2005). Induction of overproducing alkaline protease Bacillus mutants through UV irradiation. Arab Journal of Biotechnology, 8, 49–60.

    Google Scholar 

  33. Singh, S., Dhillon, A., & Goyal, A. (2020). Enhanced catalytic efficiency of Bacillus amyloliquefaciens SS35 endoglucanase by ultraviolet directed evolution and mutation analysis. Renewable Energy, 151, 1124–1133.

    Article  CAS  Google Scholar 

  34. Li, X. H., Yang, H. J., Roy, B., Park, E. Y., Jiang, L. J., Wang, D., & Miao, Y. G. (2010). Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiological research, 165, 190–198.

    Article  CAS  PubMed  Google Scholar 

  35. Jug, T., & Rusjan, D. (2012). Advantages and disadvantages of UV-B radiations on grapevine (Vitis sp.). Emirates Journal of Food and Agriculture, 24, 576–585.

    Article  Google Scholar 

  36. Wilson, M. (1993). Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. Journal of Applied Bacteriology, 75, 299–306.

    Article  CAS  Google Scholar 

  37. Yuan, X., Song, Y., Song, Y., Xu, J., Wu, Y., Andrew Glidle, Cusack, M., Ijaz, U. Z., Cooper, J. M., Huang, W. E. and Yina, H. (2018) Effect of laser irradiation on cell function and its implications in raman spectroscopy. Applied and Environmental Microbiology, 84.

  38. Mukherjee, A. K., Rai, S. K., & Bordoloi, N. K. (2011). Biodegradation of waste chicken-feathers by an alkaline β-keratinase (Mukartinase) purified from a mutant Brevibacillus sp. strain AS-S10-II. International Biodeterioration & Biodegradation, 65, 1229–1237.

    Article  CAS  Google Scholar 

  39. Nadeem, M., Qazi, J. I., & Baig, S. (2010). Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing. Brazilian Archives of Biology and Technology, 53, 1015–1025.

    Article  Google Scholar 

  40. Demirkan, E., Sevgi, T., Gokoz, M., Guler, B. E., Zeren, B., Ozalpar, B., & Abdou, M. (2018). Strain improvement by UV mutagenesis for protease overproduction from Bacillus subtilis E6–5 and nutritional optimization. Journal of Environmental Biology, 12, 69–77.

    Google Scholar 

  41. Wang, H. Y., Liu, D. M., Liu, Y., Cheng, C. F., Ma, Q. Y., Huang, Q., & Zhang, Y. Z. (2007). Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Letter of Applied Microbiology, 44, 1–6.

    Article  CAS  Google Scholar 

  42. Wang, X. C., Zhao, H. Y., G. Liu, X. J. C. and Feng, H. (2016) Improving production of extracellular proteases by random mutagenesis and biochemical characterization of a serine protease in Bacillus subtilis S1–4. Genetics and Molecular Research, 15.

  43. Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33, 216–228.

    Article  CAS  PubMed  Google Scholar 

  44. Sanghvi, G., Patel, H., Vaishnav, D., Oza, T., Dave, G., Kunjadia, P., & Sheth, N. (2016). A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. International Journal of Biological Macromolecules, 87, 256–262.

    Article  CAS  PubMed  Google Scholar 

  45. Lin, X., Lee, C. G., & E. S. C. and Shih, J. C. H. . (1992). Purification and characterization of a keratinase from a feather degrading Bacillus licheniformis strain. Applied and Environmental Microbiology, 58, 3271–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar, A. G., Swarnalatha, S., Gayathri, S., Nagesh, N., & Sekaran, G. (2007). Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. Journal of Applied Microbiology, 104, 411–419.

    PubMed  Google Scholar 

  47. Rajkumar, R., Jayappriyan, K. R., & Rengasamy, R. (2011). Purification and characterization of a protease produced by Bacillus megaterium RRM2: Application in detergent and dehairing industries. Journal of Basic Microbiology, 51, 614–624.

    Article  CAS  PubMed  Google Scholar 

  48. Akram, F., Haq, I. U., & Jabbar, Z. (2020). Production and characterization of a novel thermo- and detergent stable keratinase from Bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. International Journal of Biological Macromolecules, 164, 371–383.

    Article  CAS  PubMed  Google Scholar 

  49. Gegeckas, A., Šimkutė, A., Gudiukaitė, R., & Čitavičius, D. J. (2018). Characterization and application of keratinolytic paptidases from Bacillus spp. International Journal of Biological Macromolecules, 113, 1206–1213.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.: 31601516).

Author information

Authors and Affiliations

Authors

Contributions

JAT: conceptualization, investigation, experimentation, and original draft preparation; HM: conceptualization, manuscript reviewing, and supervision; HMZ: conceptualization and editing the manuscript; YD: data analysis; QJ: manuscript reviewing; MKG: manuscript reviewing; LF: validation and data analysis; TL: data analysis; GC: data analysis and resource management.

Corresponding author

Correspondence to Haile Ma.

Ethics declarations

Ethics Approval

Not applicable. This article does not contain data collected from humans or animals.

Consent to Participate

All authors agreed to participate.

Consent for Publication

Not applicable. The manuscript does not contain any individual person’s data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuly, J.A., Ma, H., Zabed, H.M. et al. Harnessing the Keratinolytic Activity of Bacillus licheniformis Through Random Mutagenesis Using Ultraviolet and Laser Irradiations. Appl Biochem Biotechnol 194, 1546–1565 (2022). https://doi.org/10.1007/s12010-021-03697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03697-4

Keywords

Navigation