Skip to main content

Fast Protein Liquid Chromatography

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 681))

Abstract

Fast protein liquid chromatography (FPLC) is a form of high-performance chromatography that takes advantage of high resolution made possible by small-diameter stationary phases. It was originally developed for proteins and features high loading capacity, biocompatible aqueous buffer systems, fast flow rates, and availability of stationary phases in most common chromatography modes (e.g., ion exchange, gel filtration, reversed phase, and affinity). The system makes reproducible separation possible by incorporating a high level of automation including autosamplers, gradient program control, and peak collection. In addition to proteins, the method is applicable to other kinds of biological samples including oligonucleotides and plasmids. The most common type of FPLC experiment is anion exchange of proteins. This chapter describes such an experiment carried out using an ÄKTA FPLC explorer system (Amersham Pharmacia Biotech, Sweden).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu H., Finch, J.W., Lavallee M.J., Collamati, R.A., Benevides C.C., and Gebler, J.C. (2007) Effects of column length, particle size and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations. J. Chromatogr. A 1147, 30–36.

    Article  PubMed  CAS  Google Scholar 

  2. Sheehan D. (2009) Chromatography in Physical Biochemistry: Principles and Applications. Wiley-Blackwell: Chichester, UK, second edition, 11–51.

    Google Scholar 

  3. Cabrera K. (2004) Applications of silica-based monolithic HPLC columns. J. Sep. Sci. 27, 843–852.

    Article  PubMed  CAS  Google Scholar 

  4. Richey J. (1982) FPLC: a comprehensive separation technique for biopolymers. Am. Lab. 14, 104–129.

    CAS  Google Scholar 

  5. Tangvarasittichai S., Tangvarasittichai O., and Jermnim N. (2009) Comparison of fast protein liquid chromatography (FPLC) with HPLC, electrophoresis & microcolumn chromatography techniques for the diagnosis of β-thalassaemia. Indian J. Med. Res. 129, 242–248.

    PubMed  CAS  Google Scholar 

  6. Glanc P., Galbas M., Dullin P., Szalata M., and Slomski R. (2003) The application of FPLC chromatography (Mono Q) for the purification of wheat RNA polymerase II and III. Cell. Mol. Biol. Lett. 8, 825–830.

    PubMed  CAS  Google Scholar 

  7. Plank J., Andres P.R., Krause I., and Winter C. (2008) Gram scale separation of casein proteins from whole casein on a Source 30Q anion-exchange resin column utilizing fast protein liquid chromatography (FPLC). Protein Expr. Purif. 60, 176–181.

    Article  PubMed  CAS  Google Scholar 

  8. BoeszeBattaglia K., Kong F.S., Lamba O.P., Stefano F.P., and Williams D.S. (1997) Purification and light-dependent phosphorylation of a candidate fusion protein, the photoreceptor cell peripherin/rds. Biochemistry 36, 6835–6846.

    Article  CAS  Google Scholar 

  9. Riaz M., Perveen R., Javed M.R., Nadeem H., and Rashid M.H. (2007) Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb. Technol. 41, 558–564.

    Article  CAS  Google Scholar 

  10. Miyazaki O., Fukamachi I., Mori A., Hashimoto H., Kawashiri M.A., Nohara A., Noguchi T., Inazu A., Yamagishi M., Mabuchi H., and Kobayashi J. (2009) Formation of pre beta 1-HDL during lipolysis of triglyceride-rich lipoprotein. Biochem. Biophys. Res. Commun. 379, 55–59.

    Article  PubMed  CAS  Google Scholar 

  11. Moon P.G., Hwang H.H., Boo Y.C., Kwon J., Cho J.Y., and Baek M.C. (2008) Identification of rat urinary glycoproteome captured by three lectins using gel and LC-based proteomics. Electrophoresis 29, 4324–4331.

    Article  PubMed  CAS  Google Scholar 

  12. ÄKTA FPLC system manual (2000) Amersham Pharmacia Biotech AB, Uppsala, Sweden.

    Google Scholar 

  13. Fitzpatrick, P.J., and Sheehan, D. (1993) Separation of multiple forms of glutathione S-transferase from the blue mussel, Mytilus edulis. Xenobiotica 23, 851–862.

    Article  PubMed  CAS  Google Scholar 

  14. Havarstein, L.S., Aasjord, P.M., Ness, S., and Endresen, G. (1988) Purification and partial characterisation of an IgM-like serum immunoglobulin from Atlantic salmon (Salmo salar). Dev. Comp. Immunol. 12, 773–785.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Madadlou, A., O’Sullivan, S., Sheehan, D. (2011). Fast Protein Liquid Chromatography. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 681. Humana Press. https://doi.org/10.1007/978-1-60761-913-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-913-0_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-912-3

  • Online ISBN: 978-1-60761-913-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics