Skip to main content
Log in

Integrating Microalgae Cultivation with Wastewater Treatment: a Peek into Economics

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae cultivation on wastewater is one of the most promising processes in perspective of green and circular economy. This study investigated the economics of integrating the microalgae cultivation with the wastewater treatment in perspective of biomass production and wastewater treatment. The cost of integrated process was evaluated for six cases: three cases for domestic wastewater at different stages of treatment including sewage, anaerobically digested domestic effluent, and centrate and three cases for industrial wastewater including agro-industrial wastewater, anaerobically digested piggery effluent, and anaerobically digested abattoir effluent. The cost of biomass production was found ranging from $ 0.39 to $ 0.92/kg with minimum for the anaerobically digested domestic effluent and centrate. The cost of wastewater treatment was found ranging from 0.18 to 1.69/m3 with minimum for the sewage. These costs did not include any credits generated from the biomass or the treated wastewater. The concentration of limiting nutrient, flowrate of wastewater, and the extent of nutrient removal are the major cost-influencing parameters for the integrated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., & Wiberg, D. (2016). Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 9(1), 175–222.

    Article  Google Scholar 

  2. Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: Applicability in developing countries. Journal of Environmental Management, 90(1), 652–659.

    Article  PubMed  Google Scholar 

  3. Chaudry, S., Bahri, P. A., & Moheimani, N. R. (2018). Techno-economic analysis of milking of Botryococcus braunii for renewable hydrocarbon production. Algal Research, 31, 194–203.

    Article  Google Scholar 

  4. Pasqualino, J. C., Meneses, M., & Castells, F. (2011). Life cycle assessment of urban wastewater reclamation and reuse alternatives. Journal of Industrial Ecology, 15(1), 49–63.

    Article  CAS  Google Scholar 

  5. Leyva-Díaz, J. C., Monteoliva-García, A., Martín-Pascual, J., Munio, M. M., García-Mesa, J. J., & Poyatos, J. M. (2020). Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. Bioresource Technology, 299, 122631.

    Article  PubMed  CAS  Google Scholar 

  6. Sfez, S., De Meester, S., Vlaeminck, S. E., & Dewulf, J. (2019). Improving the resource footprint evaluation of products recovered from wastewater: A discussion on appropriate allocation in the context of circular economy. Resources, Conservation and Recycling, 148, 132–144.

    Article  Google Scholar 

  7. Mo, W., & Zhang, Q. (2012). Can municipal wastewater treatment systems be carbon neutral? Journal of Environmental Management, 112, 360–367.

    Article  CAS  PubMed  Google Scholar 

  8. Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M., Chen, P., Chen, D., & Ruan, R. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934.

    Article  CAS  PubMed  Google Scholar 

  9. Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, 122817.

    Article  CAS  PubMed  Google Scholar 

  11. Williams, P. J. l. B. and Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3(5), 554–590.

    Article  Google Scholar 

  12. Stiles, W. A. V., Styles, D., Chapman, S. P., Esteves, S., Bywater, A., Melville, L., Silkina, A., Lupatsch, I., Fuentes Grünewald, C., Lovitt, R., Chaloner, T., Bull, A., Morris, C., & Llewellyn, C. A. (2018). Using microalgae in the circular economy to valorise anaerobic digestate: Challenges and opportunities. Bioresource Technology, 267, 732–742.

    Article  CAS  PubMed  Google Scholar 

  13. Phang, S.-M., Chu, W.-L. and Rabiei, R. (2015), In the algae world, (Sahoo, D. and Seckbach, J., eds.), Springer Netherlands, Dordrecht, pp. 357-389.

  14. Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., Neto, P. C., Ferreira, A. F., & Silva, C. M. (2016). Microalgae biomass production using wastewater: Treatment and costs: Scale-up considerations. Algal Research, 16, 167–176.

    Article  Google Scholar 

  15. Chaudry, S., Bahri, P. A., & Moheimani, N. R. (2015). Pathways of processing of wet microalgae for liquid fuel production: A critical review. Renewable and Sustainable Energy Reviews, 52, 1240–1250.

    Article  CAS  Google Scholar 

  16. Olguín, E. J. (2012). Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnology Advances, 30(5), 1031–1046.

    Article  PubMed  CAS  Google Scholar 

  17. Acién Fernández, F. G., Gómez-Serrano, C. and Fernández-Sevilla, J. M. (2018) Recovery of nutrients from wastewaters using microalgae. Frontiers in Sustainable Food Systems, 2.

  18. Maizatul, A. Y., Radin Mohamed, R. M. S., Al-Gheethi, A. A., & Hashim, M. K. A. (2017). An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. International Aquatic Research, 9(3), 177–193.

    Article  Google Scholar 

  19. Banerjee, S., & Ramaswamy, S. (2017). Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds. Algal Research, 26, 330–340.

    Article  Google Scholar 

  20. Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science & Technology, 43(17), 6475–6481.

    Article  CAS  Google Scholar 

  21. Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165.

    Article  CAS  PubMed  Google Scholar 

  22. Fortier, M.-O. P., & Sturm, B. S. (2012). Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants. Environmental Science & Technology, 46(20), 11426–11434.

    Article  CAS  Google Scholar 

  23. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.

    Article  CAS  Google Scholar 

  24. Molazadeh, M., Ahmadzadeh, H., Pourianfar, H. R., Lyon, S., & Rampelotto, P. H. (2019). The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7.

  25. Gupta, S. (1985). Nitrogenous wastewater treatment by activated algae. Journal of Environmental Engineering, 111(1), 61–77.

    Article  CAS  Google Scholar 

  26. McGriff, E. C., & McKinney, R. E. (1972). The removal of nutrients and organics by activated algae. Water Research, 6(10), 1155–1164.

    Article  CAS  Google Scholar 

  27. Hultberg, M., Carlsson, A. S., & Gustafsson, S. (2013). Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresource Technology, 136, 401–406.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174–1186.

    Article  CAS  PubMed  Google Scholar 

  29. Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11), 1115–1122.

    Article  CAS  Google Scholar 

  30. Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.

    Article  CAS  PubMed  Google Scholar 

  31. Martı́nez, M. E., Sánchez, S., Jiménez, J. M., El Yousfi, F. and Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73, 263–272.

    Article  Google Scholar 

  32. Zuliani, L., Frison, N., Jelic, A., Fatone, F., Bolzonella, D., & Ballottari, M. (2016). Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. International Journal of Molecular Sciences, 17(10), 1692.

    Article  PubMed Central  CAS  Google Scholar 

  33. Udom, I., Zaribaf, B. H., Halfhide, T., Gillie, B., Dalrymple, O., Zhang, Q., & Ergas, S. J. (2013). Harvesting microalgae grown on wastewater. Bioresource Technology, 139, 101–106.

    Article  CAS  PubMed  Google Scholar 

  34. Sekaran, G., Karthikeyan, S., Nagalakshmi, C., & Mandal, A. (2013). Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater. Environmental Science and Pollution Research, 20(1), 281–291.

    Article  CAS  PubMed  Google Scholar 

  35. Raeisossadati, M., Vadiveloo, A., Bahri, P. A., Parlevliet, D., & Moheimani, N. R. (2019). Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. Journal of Applied Phycology, 31(4), 2311–2319.

    Article  CAS  Google Scholar 

  36. Abou-Shanab, R. A., Ji, M.-K., Kim, H.-C., Paeng, K.-J., & Jeon, B.-H. (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115, 257–264.

    Article  CAS  PubMed  Google Scholar 

  37. de Souza Leite, L., Hoffmann, M. T., & Daniel, L. A. (2019). Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. Journal of Water Process Engineering, 31, 100821.

    Article  Google Scholar 

  38. Wang, H., Xiong, H., Hui, Z., & Zeng, X. (2012). Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology, 104, 215–220.

    Article  CAS  PubMed  Google Scholar 

  39. Ayre, J. M., Moheimani, N. R., & Borowitzka, M. A. (2017). Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 24, 218–226.

    Article  Google Scholar 

  40. Vadiveloo, A., Matos, A. P., Chaudry, S., Bahri, P. A., & Moheimani, N. R. (2020). Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae). Journal of CO2 Utilization, 38, 273–281.

    Article  CAS  Google Scholar 

  41. Davis, R., Aden, A., & Pienkos, P. T. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88(10), 3524–3531.

    Article  Google Scholar 

  42. Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R., & Pienkos, P. T. (2011). Comparative cost analysis of algal oil production for biofuels. Energy, 36(8), 5169–5179.

    Article  Google Scholar 

  43. Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Applied Energy, 102, 461–475.

    Article  Google Scholar 

  44. Richardson, J. W., Outlaw, J. L., & Allison, M. (2010). The Economics of Microalgae oil. AgBio Forum, 13, 119–130.

    Google Scholar 

  45. Norsker, N.-H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production — A close look at the economics. Biotechnology Advances, 29(1), 24–27.

    Article  CAS  PubMed  Google Scholar 

  46. Delrue, F., Li-Beisson, Y., Setier, P. A., Sahut, C., Roubaud, A., Froment, A. K., & Peltier, G. (2013). Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Bioresource Technology, 136, 205–212.

    Article  CAS  PubMed  Google Scholar 

  47. Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38.

    Article  Google Scholar 

  48. Xin, C., Addy, M. M., Zhao, J., Cheng, Y., Cheng, S., Mu, D., Liu, Y., Ding, R., Chen, P., & Ruan, R. (2016). Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study. Bioresource Technology, 211, 584–593.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar, A. K., Sharma, S., Dixit, G., Shah, E., & Patel, A. (2020). Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale high volume V-shape pond system. Renewable Energy, 145, 1620–1632.

    Article  Google Scholar 

  50. Moheimani, N. (2018). Growth, development and use of algae grown on untreated and undiluted anaerobic digestion piggery effluent. Co-operative Research Centre for High Integrity Australian Pork.

  51. Moheimani, N. R., Cord-Ruwisch, R., Raes, E., & Borowitzka, M. A. (2013). Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). Journal of Applied Phycology, 25(6), 1653–1661.

    Article  CAS  Google Scholar 

  52. Lundquist, T. J., I.C.Woertz, N.W.T.Quinn and J.R.Benemann. (2010) A realistic technology and engineering assessment of algae biofuel production.

  53. García, J., Mujeriego, R., & Hernández-Mariné, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12(3/5), 331–339.

    Article  Google Scholar 

  54. Chaudry, S., Bahri, P. A., & Moheimani, N. R. (2017). Superstructure optimization and energetic feasibility analysis of process of repetitive extraction of hydrocarbons from Botryococcus braunii – A species of microalgae. Computers & Chemical Engineering, 97, 36–46.

    Article  CAS  Google Scholar 

  55. Cashman, S., Gaglione, A., Mosley, J., Weiss, L., Hawkins, T., Ashbolt, N., Cashdollar, J., Xue, X., Ma, C., & Arden, S. (2014). Environmental and cost life cycle assessment of disinfection options for municipal wastewater treatment. Office of Research and Development.

  56. Fraas, A. G., & Munley, V. G. (1984). Municipal wastewater treatment cost. Journal of Environmental Economics and Management, 11(1), 28–38.

    Article  Google Scholar 

Download references

Availability of data and material

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

S. Chaudry designed the research, collected data, developed and run the models, analyzed the results, and wrote the manuscript.

Corresponding author

Correspondence to Sofia Chaudry.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudry, S. Integrating Microalgae Cultivation with Wastewater Treatment: a Peek into Economics. Appl Biochem Biotechnol 193, 3395–3406 (2021). https://doi.org/10.1007/s12010-021-03612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03612-x

Keywords

Navigation