Skip to main content
Log in

Forward Black Liquor Acid Precipitation: Lignin Fractionation by Ultrafiltration

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignin recovery from black liquor is an important task for producing valuable chemical products. Acidification processes are currently applied by pulp and paper industries for black liquor treatment, in which two main streams are produced: the precipitated lignin fraction and a lignin-lean black liquor. Membrane filtration is a suitable alternative for lignin recovery from black liquor, but studies on lignin-lean black liquor filtration are scarce. Here, we evaluated the ultrafiltration process for lignin recovery from the both fractions of black liquor acidification. The lignin-lean black liquor presented 22 wt% of total solids with 4.6 wt% of lignin. Lignin retention from the lignin-lean black liquor by the 5 kDa ultrafiltration membrane was equal to 85%, with reduction in total solid concentration from 219.8 to 68.1 g L−1. Due to the relatively high solid concentration in the lignin-lean black liquor, cake formation was the main fouling mechanism during ultrafiltrations. The precipitated lignin solution presented 4.8 wt% of total solids with equivalent lignin concentration (4.7 wt%). The used membrane was able to retain almost 100% of solids and lignin from the solution prepared from the precipitated lignin. All fouling mechanisms were responsible for flux decay in ultrafiltration of the precipitated lignin solution. Steady state fluxes for lignin-lean black liquor and precipitated lignin solution were 0.9 and 15.9 L h−1 m−2, respectively. According to TGA analyses up to 800 °C, precipitated lignin and lignin-lean black liquor presented total mass losses of 63.5% and 44.3%, respectively. Also, the permeate samples presented lower mass losses than their respective feed samples. The ultrafiltration process reduced the average weight molar mass (Mw) of the precipitated lignin solution and lignin-lean black liquor from 1817 to 486 g mol−1and from 2876 to 1095 g mol−1, respectively. Thus, the 5 kDa ultrafiltration membrane was efficient for lignin recovery from the lignin-lean black liquor, while membranes with lower cut-off should be proposed for lignin purification from the precipitated fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, M.H.M.R.

References

  1. Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A., & Wyman, C. E. (2014). Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 344(6185), 1246843.

    Article  PubMed  CAS  Google Scholar 

  2. Smichi, N., Messaoudi, Y., & Gargouri, M. (2017). Waste biomass. Valori, 9, 947–956.

    Google Scholar 

  3. Lin, S. Y., & Dence, C. W. (1992). Methods in lignin (chemistry. ed.). Springer-Verlag.

  4. Naseem, A., Tabasum, S., Zia, K. M., Zuber, M., Ali, M., & Noreen, A. (2016). Lignin-derivatives based polymers, blends and composites: A review. Int. J. Biol. Macromol., 93(Pt A), 296–313.

    Article  CAS  PubMed  Google Scholar 

  5. Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environmental impact. Ind. Crop. Prod., 139, 111526.

    Article  CAS  Google Scholar 

  6. Belkheiri, T., Andersson, S.-I., Mattsson, C., Olausson, L., Theliander, H., & Vamling, L. (2018). Biomass convers. Biorefin., 8, 585–595.

    CAS  Google Scholar 

  7. Chen, H. (2015) In Lignocellulose biorefinery engineering, (Chen, H., ed.), Woodhead Publishing 37-86.

  8. Hu, J., Zhang, Q., & Lee, D.-J. (2018). Kraft lignin biorefinery: A perspective. Bioresour. Technol., 247, 1181–1183.

    Article  CAS  PubMed  Google Scholar 

  9. Moerck, R. S. F. P. R. L., Yoshida, H., Kringstad, K. P., & Hatakeyama, H. (1986). Holzforschung. v. Stockholm Sweden., 40.

  10. Delgado, N., Ysambertt, F., Chávez, G., Bravo, B., García, D. E., & Santos, J. (2018). Waste biomass. Valorization, 10, 3383–3395.

    Article  CAS  Google Scholar 

  11. Araújo, D. J. C., Machado, A. V., & Vilarinho, M. C. L. G. (2019). Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste Biomass Valorization., 10(10), 2863–2878.

    Article  CAS  Google Scholar 

  12. Hu, X., Gil-Chavez, J., Hadzi-Ristic, A., Kreft, C., Lim, C. R., Zetzl, C., & Smirnova, I. (2019). Biomass Convers. Biorefin.

  13. Goldmann, W. M., Anthonykutty, J. M., Ahola, J., Komulainen, S., Hiltunen, S., Kantola, A. M., Telkki, V.-V., & Tanskanen, J. (2019). Waste Biomass. Valori., 11, 3195–3206.

    Google Scholar 

  14. Sudarsanam, P., Duolikun, T., Babu, P. S., Rokhum, L. and Johan, M. R. (2019) Biomass Convers. Biorefin.

    Google Scholar 

  15. Zhu, W., Westman, G., & Theliander, H. (2014). Investigation and Characterization of Lignin Precipitation in the LignoBoost Process. J. Wood Chem. Technol., 34(2), 77–97.

    Article  CAS  Google Scholar 

  16. Andreo-Martínez, P., Ortiz-Martínez, V. M., García-Martínez, N., Hernández-Fernández, F. J., & de los Ríos, A. P. and Quesada-Medina, J. (2020). Biomass Convers. Biorefin.

  17. Tagami, A., Gioia, C., Lauberts, M., Budnyak, T., Moriana, R., Lindström, M. E., & Sevastyanova, O. (2019). Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: Compositional, structural, thermal, antioxidant and adsorption properties. Ind. Crop. Prod, 129, 123–134.

    Article  CAS  Google Scholar 

  18. Sun, W., Trevorah, R., & Othman, M. Z. (2018). Fractionation of spent liquor from organosolv-pretreatment using lignin-incompatible extraction. Bioresour. Technol., 269, 255–261.

    Article  CAS  PubMed  Google Scholar 

  19. Liang, S., & Wan, C. (2016). Waste biomass. Valorization, 8, 393–400.

    Article  CAS  Google Scholar 

  20. Toledano, A., Serrano, L., Garcia, A., Mondragon, I., & Labidi, J. (2010). Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem Eng J, 157(1), 93–99.

    Article  CAS  Google Scholar 

  21. Uloth, V. C., & Wearing, J. T. (1989). Pulp Pap Can. v, 90.

  22. Botello, J. I., Gilarranz, M. A., RodrÍGuez, F., & Oliet, M. (1999). Recovery of Solvent and By-Products from Organosolv Black Liquor. Sep. Sci. Technol., 34(12), 2431–2445.

    Article  CAS  Google Scholar 

  23. Gao, W., Sun, Y., Kong, F., Liu, Z. and Fatehi, P. (2020) Waste biomass valori.

  24. Hubbe, M., Alén, R., Paleologou, M., Kannangara, M., & Kihlman, J. (2019). Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: A review. BioResources., 14(1), 2300–2351.

    Article  CAS  Google Scholar 

  25. Tomani, P. (2010). Cellul. Chem. Technol, 53-58.

  26. Öhman, F., Wallmo, H., & Theliander, H. (2007). Nordic Pulp Paper Res. J, 22, 188–193.

    Article  Google Scholar 

  27. Helander, M., Mattsson, T., Theliander, H., & Lindström, M. E. (2016). Parameters Affecting the Cross-Flow Filtration of Dissolved LignoBoost Kraft Lignin. J. Wood Chem. Technol, 36(1), 1–8.

    Article  CAS  Google Scholar 

  28. Abdelaziz, O. Y., & Hulteberg, C. P. (2017). Waste biomass., 8, Valori, 859–Val869.

  29. Xu, G., Yan, G. Y., & Yang, J. H. (2013). Waste biomass. Valori, 4, 497–502.

    CAS  Google Scholar 

  30. Kevlich, N. S., Shofner, M. L., & Nair, S. (2017). Membranes for Kraft black liquor concentration and chemical recovery: Current progress, challenges, and opportunities. Sep Sci Technol, 52(6), 1070–1094.

    Article  CAS  Google Scholar 

  31. Strathmann, H. (1981). Membrane separation processes. J Membrane Sci, 9(1-2), 121–189.

    Article  CAS  Google Scholar 

  32. Fernández-Rodríguez, J., Erdocia, X., Hernández-Ramos, F., Alriols, M. G. and Labidi, J. (2019), In Separation of functional molecules in food by membrane technology, (Galanakis, C. M., ed.), Academic Press 229-265

  33. Sevastyanova, O., Helander, M., Chowdhury, S., Lange, H., Wedin, H., Zhang, L., Ek, M., Kadla, J. F., Crestini, C., & Lindström, M. E. (2014). J Appl Polym Sci, 131.

  34. Liao, B., Bokhary, A., Cui, L., & Lin, H. (2017). J Membrane Sci Res, 3, 120–141.

    Google Scholar 

  35. Hill, M. K., Violette, D. A., & Woerner, D. L. (1988). Lowering Kraft Black Liquor Viscosity by Ultrafiltration. Sep Sci Technol, 23(12-13), 1789–1798.

    Article  CAS  Google Scholar 

  36. Wallberg, O., Jönsson, A. and Wimmerstedt, R. (2003) Desalination 187-199.

  37. Wallberg, O., & Jönsson, A.-S. (2006). Separation of lignin in kraft cooking liquor from a continuous digester by ultrafiltration at temperatures above 100°C. Desalination., 195(1-3), 187–200.

    Article  CAS  Google Scholar 

  38. Bhattacharjee, S., Datta, S., & Bhattacharjee, C. (2006). Performance study during ultrafiltration of Kraft black liquor using rotating disk membrane module. J. Clean Prod., 14(5), 497–504.

    Article  Google Scholar 

  39. Toledano, A., García, A., Mondragon, I., & Labidi, J. (2010). Lignin separation and fractionation by ultrafiltration. Sep Purif Technol, 71(1), 38–43.

    Article  CAS  Google Scholar 

  40. Helander, M., Theliander, H., Lawoko, M., Henriksson, G., Zhang, L., & Lindström, M. (2013). BioResources, 8.

  41. Jönsson, A.-S., & Wallberg, O. (2009). Cost estimates of kraft lignin recovery by ultrafiltration. Desalination, 237(1-3), 254–267.

    Article  CAS  Google Scholar 

  42. Arkell, A., Olsson, J., & Wallberg, O. (2014). Process performance in lignin separation from softwood black liquor by membrane filtration. Chem Eng Res Des, 92(9), 1792–1800.

    Article  CAS  Google Scholar 

  43. Ziesig, R., Tomani, P., & Theliander, H. (2014). Cellul Chem Technol, 48, 805–811.

    CAS  Google Scholar 

  44. Aminzadeh, S., Lauberts, M., Dobele, G., Ponomarenko, J., Mattsson, T., Lindström, M. E., & Sevastyanova, O. (2018). Membrane filtration of kraft lignin: Structural charactristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crop. Prod., 112, 200–209.

    Article  CAS  Google Scholar 

  45. Kouisni, L., Holt-Hindle, P., Maki, K., & Paleologou, M. (2014). Pulp Paper Canada., 115, 18–22.

    Google Scholar 

  46. Valkonen, S., Pietarinen, S., Ringena, O. and Eskelinen, K. (2016) Use of low molecular weight lgnin together with lgnn for the production of a phenol-formaldehyde binder composition. (ed Corporation, U.-K.). UPM-Kymmene Corporation, USA.

  47. Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for microfiltration fouling. J. Membrane Sci., 100(3), 259–272.

    Article  CAS  Google Scholar 

  48. Alén, R., & Hartus, T. (1988). Cellul. Chem. Technol., 612-618.

  49. Araújo, L. C. P., Yamaji, F. M., Lima, V. H., & Botaro, V. R. (2020). Bioresour. Technol., 314, 123757.

    Google Scholar 

  50. Kim, G.-H., & Um, B.-H. (2020). Fractionation and characterization of lignins from Miscanthus via organosolv and soda pulping for biorefinery applications. Int. J. Biol. Macromol., 158, 443–451.

    Article  CAS  PubMed  Google Scholar 

  51. Moreira, R., Mendes, C. V. T., Banaco, M. B. F., Carvalho, M. G. V. S., & Protugual, A. (2020). Ind. Crop. Prod., 152.

  52. Fernández-Costas, C., Gouveia, S., Sanromán, M. A. and Moldes, D. (2014) Biomass Bioenergy. 156-166.

  53. Zinovyev, G., Sumerskii, I., Korntner, P., Sulaeva, I., Rosenau, T., & Potthast, A. (2017). Molar mass-dependent profiles of functional groups and carbohydrates in kraft lignin. J. Wood Chem. Technol., 37(3), 171–183.

    Article  CAS  Google Scholar 

  54. Contreras, S., Gaspar, A. R., Guerra, A., Lucia, L. A., & Argyropoulos, D. S. (2008). Propensity of Lignin to Associate: Light Scattering Photometry Study with Native Lignins. Biomacromolecules., 9(12), 3362–3369.

    Article  CAS  PubMed  Google Scholar 

  55. Jönsson, A.-S., Nordin, A.-K., & Wallberg, O. (2008). Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem. Eng. Res. Des., 86(11), 1271–1280.

    Article  CAS  Google Scholar 

  56. Ahmad, E. and Pant, K. K. (2018), in Waste biorefinery, (Bhaskar, T., Pandey, A., Mohan, S. V., Lee, D.-J. and Khanal, S. K., eds.), Elsevier 409-444.

  57. Jaretun, A., & Aly, G. (2000). Removal of Chloride and Potassium from Kraft Chemical Recovery Cycles. Sep. Sci. Technol., 35(3), 421–438.

    Article  CAS  Google Scholar 

  58. Tejado, A., Peña, C., Labidi, J., Echeverria, J. M., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol., 98(8), 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  59. Derkacheva, O., & Sukhov, D. (2008). Investigation of Lignins by FTIR Spectroscopy. Macromolecular symposia., 265(1), 61–68.

    Article  CAS  Google Scholar 

  60. Maciel, A. V., Job, A. E., Mussel, W. N., & Pasa, V. M. D. (2012). Pyrolysis and auto-gasification of black liquor in presence of ZnO: An integrated process for Zn/ZnO nanostructure production and bioenergy generation. Biomass bioenergy., 46, 538–545.

    Article  CAS  Google Scholar 

  61. Zhang, Q., Li, H., Guo, Z., & Xu, F. (2020). Polymers., 12.

  62. Zhang, M., Resende, F. L. P., Moutsoglou, A., & Raynie, D. E. (2012). Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J. Anal. Appl. Pyrolysis., 98, 65–71.

    Article  CAS  Google Scholar 

  63. Lourençon, T. V., Hansel, F. A., da Silva, T. A., Ramos, L. P., de Muniz, G. I. B., & Magalhães, W. L. E. (2015). Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol., 154, 82–88.

    Article  CAS  Google Scholar 

  64. Dias, R. M., da Costa Lopes, A. M., Silvestre, A. J. D., Coutinho, J. A. P., & da Costa, M. C. (2020). Uncovering the potentialities of protic ionic liquids based on alkanolammonium and carboxylate ions and their aqueous solutions as non-derivatizing solvents of Kraft lignin. Ind. Crop. Prod., 143, 111866.

    Article  CAS  Google Scholar 

  65. Gómez-Ceballos, V., García-Córdoba, A., Zapata-Benabithe, Z., Velásquez, J., & Quintana, G. (2020). Preparation of hyperbranched polymers from oxidized lignin modified with triazine for removal of heavy metals. Polym. Degrad. Stab., 179, 109271.

    Article  CAS  Google Scholar 

  66. Tran, H. and Earl, P. F. (2004) Chloride and potassium removal processes for kraft pulp mills: a technical review. International Chemical Recovery Conference pp. 381-392. Charleston, SC.

  67. Wallberg, O., & Jönsson, A. S. (2003). Influence of the Membrane Cut-off During Ultrafiltration of Kraft Black Liquor with Ceramic Membranes. Chem. Eng. Res. Des., 81(10), 1379–1384.

    Article  CAS  Google Scholar 

  68. Cardoso, M., de Oliveira, É. D., & Passos, M. L. (2009). Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills. Fuel., 88(4), 756–763.

    Article  CAS  Google Scholar 

  69. Speight, J. G. (2019), in heavy oil recovery and upgrading, (Speight, J. G., ed.), Gulf Professional Publishing 559-614.

  70. Bajpai, P. (2018), in Biermann's Handbook of Pulp and Paper (Third Edition), (Bajpai, P., ed.), Elsevier 295-351.

Download references

Acknowledgements

This research was supported by FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Project 2019/19401-1), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors acknowledge Suzano Pulp and Paper S. A. for supplying lignin samples.

Code Availability

Software application or custom code are available on request from the corresponding author, M.H.M.R.

Funding

This research was supported by FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors acknowledge Suzano Pulp and Paper S. A. for supplying lignin samples.

Author information

Authors and Affiliations

Authors

Contributions

SFM: conceptualization, methodology, writing—original draft, investigation, visualization. JSR: conceptualization, methodology, writing—original draft, investigation, visualization. VHdeL: conceptualization, methodology, writing—original draft, investigation, visualization. VRB: conceptualization, methodology, writing—original draft, investigation, visualization. VLC: conceptualization, methodology, resources, data curation, writing—review and editing, visualization, supervision, project administration, funding acquisition. MHMR: conceptualization, methodology, Software, formal analysis, validation, resources, data curation, writing—review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Miria H. M. Reis.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, S.F., Rodrigues, J.S., de Lima, V.H. et al. Forward Black Liquor Acid Precipitation: Lignin Fractionation by Ultrafiltration. Appl Biochem Biotechnol 193, 3079–3097 (2021). https://doi.org/10.1007/s12010-021-03580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03580-2

Keywords

Navigation