Skip to main content

Advertisement

Log in

Bioutilization of Chicken Feather Waste by Newly Isolated Keratinolytic Bacteria and Conversion into Protein Hydrolysates with Improved Functionalities

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chicken feathers are major poultry waste that is difficult to process in its native form due to highly resistant keratin protein in large amounts. In this study, a novel feather-degrading bacterium, Bacillus amyloliquefaciens KB1, was screened from a chicken farm bed (CFB) using morphological and biochemical tests followed by 16s rDNA analysis. Among observed isolates, bacterial isolate (KB1) showed the highest degree of feather degradation (74.78 ± 2.94%) and total soluble protein (205 ± 0.03 mg/g). The optimum fermentation conditions obtained were at 40 °C (temperature), pH 9, and 1% (w/v) feather concentration using response surface methodology in a Box-Behnken design. It produced 260 mg/g of soluble protein and bioactive peptides with 86.16% feather degradation. The amino acid profile showed an increase in the concentration of essential amino acids compared with the feather meal broth. The selection of a safe screening source for this new bacterium in CFB produced hydrolysates with enhanced bioactivity applicable for feed, and cosmetic applications, along with environmental bioremediation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data will be made available from the corresponding author on reasonable request.

Code Availability

Not applicable

References

  1. Łaba, W., Żarowska, B., Chorążyk, D., Pudło, A., Piegza, M., Kancelista, A., & Kopeć, W. (2018). New keratinolytic bacteria in valorization of chicken feather waste. AMB Express, 8(1), 9. https://doi.org/10.1186/s13568-018-0538-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tesfaye, T., Sithole, B., Ramjugernath, D., & Chunilall, V. (2017). Valorisation of chicken feathers: Characterisation of chemical properties. Waste Management, 68, 626–635. https://doi.org/10.1016/j.scp.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  3. Lasekan, A., Bakar, F. A., & Hashim, D. (2013). Potential of chicken by-products as sources of useful biological resources. Waste Management, 33(3), 552–565. https://doi.org/10.1016/j.wasman.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  4. Haddar, H. O., Zaghloul, T. I., & Saeed, H. M. (2009). Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation, 20(5), 687–694. https://doi.org/10.1007/s10532-009-9256-0.

    Article  CAS  Google Scholar 

  5. Gupta, R., Rajput, R., Sharma, R., & Gupta, N. (2013). Biotechnological applications and prospective market of microbial keratinases. Applied Microbiology and Biotechnology, 97(23), 9931–9940. https://doi.org/10.1007/s00253-013-5292-0.

    Article  CAS  PubMed  Google Scholar 

  6. Brandelli, A., Daroit, D. J., & Riffel, A. (2010). Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology, 85(6), 1735–1750. https://doi.org/10.1007/s00253-009-2398-5.

    Article  CAS  PubMed  Google Scholar 

  7. Taskin, M., & Kurbanoglu, E. (2011). Evaluation of waste chicken feathers as peptone source for bacterial growth. Journal of Applied Microbiology, 111(4), 826–834. https://doi.org/10.1111/j.1365-2672.2011.05103.x.

    Article  CAS  PubMed  Google Scholar 

  8. Lange, L., Huang, Y., & Busk, P. K. (2016). Microbial decomposition of keratin in nature—A new hypothesis of industrial relevance. Applied Microbiology and Biotechnology, 100(5), 2083–2096. https://doi.org/10.1007/s00253-015-7262-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fakhfakh, N., Ktari, N., Haddar, A., Mnif, I. H., Dahmen, I., & Nasri, M. (2011). Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochemistry, 46(9), 1731–1737. https://doi.org/10.1016/j.procbio.2011.05.023.

    Article  CAS  Google Scholar 

  10. Peng, Z., Mao, X., Zhang, J., Du, G., & Chen, J. (2019). Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microbial Cell Factories, 18(1), 1–11. https://doi.org/10.1186/s12934-019-1134-9.

    Article  CAS  Google Scholar 

  11. Holkar, C. R., Jain, S. S., Jadhav, A. J., & Pinjari, D. V. (2018). Valorization of keratin based waste. Process Safety and Environmental Protection, 115, 85–98. https://doi.org/10.1016/j.psep.2017.08.045.

    Article  CAS  Google Scholar 

  12. Anbu, P., Gopinath, S. C., Hilda, A., Mathivanan, N., & Annadurai, G. (2006). Secretion of keratinolytic enzymes and keratinolysis by Scopulariopsis brevicaulis and Trichophyton mentagrophytes: regression analysis. Canadian Journal of Microbiology, 52(11), 1060–1069. https://doi.org/10.1139/w06-067.

    Article  CAS  PubMed  Google Scholar 

  13. Syed, D. G., Lee, J. C., Li, W.-J., Kim, C.-J., & Agasar, D. (2009). Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresource Technology, 100(5), 1868–1871. https://doi.org/10.1016/j.biortech.2008.09.047.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, R., Balaji, S., Uma, T., Mandal, A., & Sehgal, P. (2010). Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal—A biowaste management. Applied Biochemistry and Biotechnology, 160(1), 30–39. https://doi.org/10.1007/s12010-008-8452-4.

    Article  CAS  PubMed  Google Scholar 

  15. Wan, M.-Y., Dong, G., Yang, B.-Q., & Feng, H. (2016). Identification and characterization of a novel antioxidant peptide from feather keratin hydrolysate. Biotechnology Letters, 38(4), 643–649. https://doi.org/10.1007/s10529-015-2016-9.

    Article  CAS  PubMed  Google Scholar 

  16. Forgács, G., Lundin, M., Taherzadeh, M. J., & Horváth, I. S. (2013). Pretreatment of chicken feather waste for improved biogas production. Applied Biochemistry and Biotechnology, 169(7), 2016–2028. https://doi.org/10.1007/s12010-013-0116-3.

  17. Veenayohini, K., & Sangeetha, D. (2016). Isolation and identification of keratinolytic bacteria from poultry waste and assessment of its keratinase activity on chicken feathers. International Journal of Applied Research, 2, 396–402.

    Google Scholar 

  18. Dada, M., & Wakil, S. (2019). Screening and characterisation of keratin-degrading Bacillus sp. from feather waste. Biotechnology Journal International, 1–12. https://doi.org/10.9734/bji/2019/v23i130067.

  19. Sahoo, D. K., Das, A., Thatoi, H., Mondal, K. C., & Mohapatra, P. K. D. (2012). Keratinase production and biodegradation of whole chicken feather keratin by a newly isolated bacterium under submerged fermentation. Applied Biochemistry and Biotechnology, 167(5), 1040–1051. https://doi.org/10.1007/s12010-011-9527-1.

    Article  CAS  PubMed  Google Scholar 

  20. Cheong, C. W., Lee, Y. S., Ahmad, S. A., Ooi, P. T., & Phang, L. Y. (2018). Chicken feather valorization by thermal alkaline pretreatment followed by enzymatic hydrolysis for protein-rich hydrolysate production. Waste Management, 79, 658–666. https://doi.org/10.1016/j.wasman.2018.08.029.

    Article  CAS  PubMed  Google Scholar 

  21. AOAC, G. (2016). Official methods of analysis of AOAC International. AOAC International ISBN: 978-0-935584-87-5.

  22. Daroit, D. J., Corrêa, A. P. F., & Brandelli, A. (2011). Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. International Biodeterioration & Biodegradation, 65(1), 45–51. https://doi.org/10.1016/j.ibiod.2010.04.014.

    Article  CAS  Google Scholar 

  23. Bernal, C., Diaz, I., & Coello, N. (2006). Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea. Canadian Journal of Microbiology, 52(5), 445–450. https://doi.org/10.1139/w05-139.

    Article  CAS  PubMed  Google Scholar 

  24. Kruger, N. J. (2009). The protein protocols handbook (pp. 17–24). Springer. https://doi.org/10.1007/978-1-59745-198-7_4.

  25. Jain, S., & Anal, A. K. (2016). Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis. LWT- Food Science and Technology, 69, 295–302. https://doi.org/10.1016/j.lwt.2016.01.057.

    Article  CAS  Google Scholar 

  26. Raungrusmee, S., Shrestha, S., Sadiq, M. B., & Anal, A. K. (2020). Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles. LWT-Food Science and Technology, 109279. https://doi.org/10.1016/j.lwt.2020.109279.

  27. Raungrusmee, S., & Anal, A. K. (2019). Effects of lintnerization, autoclaving, and freeze-thaw treatments on resistant starch formation and functional properties of Pathumthani 80 rice starch. Foods, 8(11), 558. https://doi.org/10.3390/foods8110558.

    Article  CAS  PubMed Central  Google Scholar 

  28. Vidal, A. R., Duarte, L. P., Schmidt, M. M., Cansian, R. L., Fernandes, I. A., de Oliveira Mello, R., Demiate, I. M., & Dornelles, R. C. P. (2020). Extraction and characterization of collagen from sheep slaughter by-products. Waste Management, 102, 838–846. https://doi.org/10.1016/j.wasman.2019.12.004.

    Article  CAS  PubMed  Google Scholar 

  29. Dhakal, D., Koomsap, P., Lamichhane, A., Sadiq, M. B., & Anal, A. K. (2018). Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Bioscience, 23, 23–30. https://doi.org/10.1016/j.fbio.2018.03.003.

    Article  CAS  Google Scholar 

  30. Garrido, T., Gizdavic-Nikolaidis, M., Leceta, I., Urdanpilleta, M., Guerrero, P., de la Caba, K., & Kilmartin, P. A. (2019). Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Management, 88, 110–117. https://doi.org/10.1016/j.wasman.2019.03.031.

    Article  CAS  PubMed  Google Scholar 

  31. Sella, S. R., Vandenberghe, L. P., & Soccol, C. R. (2014). Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiological Research, 169(12), 931–939. https://doi.org/10.1016/j.micres.2014.05.001.

    Article  CAS  PubMed  Google Scholar 

  32. Fan, B., Blom, J., Klenk, H.-P., & Borriss, R. (2017). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 8, 22. https://doi.org/10.3389/fmicb.2017.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parrado, J., Rodriguez-Morgado, B., Tejada, M., Hernandez, T., & Garcia, C. (2014). Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme and Microbial Technology, 57, 1–7. https://doi.org/10.1016/j.enzmictec.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  34. Yang, L., Wang, H., Lv, Y., Bai, Y., Luo, H., Shi, P., Huang, H., & Yao, B. (2016). Construction of a rapid feather-degrading bacterium by overexpression of a highly efficient alkaline keratinase in its parent strain Bacillus amyloliquefaciens K11. Journal of Agricultural and Food Chemistry, 64(1), 78–84. https://doi.org/10.1021/acs.jafc.5b04747.

    Article  CAS  PubMed  Google Scholar 

  35. Alahyaribeik, S., Sharifi, S. D., Tabandeh, F., Honarbakhsh, S., & Ghazanfari, S. (2020). Bioconversion of chicken feather wastes by keratinolytic bacteria. Process Safety and Environmental Protection, 135, 171–178. https://doi.org/10.1016/j.psep.2020.01.014.

    Article  CAS  Google Scholar 

  36. Zou, Y., Wang, L., Cai, P., Li, P., Zhang, M., Sun, Z., Sun, C., Xu, W., & Wang, D. (2017). Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. International Journal of Biological Macromolecules, 105(Pt 3), 1602–1610. https://doi.org/10.1016/j.ijbiomac.2017.03.011.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, C., Li, Y., Yu, X., Yang, H., Ma, H., Yagoub, A. E. A., Cheng, Y., Hu, J., & Otu, P. N. Y. (2016). Extraction and characterization of chicken feet soluble collagen. LWT- Food Science and Technology, 74, 145–153. https://doi.org/10.1016/j.lwt.2016.07.024.

    Article  CAS  Google Scholar 

  38. Miller, L. M., Bourassa, M. W., & Smith, R. J. (2013). FTIR spectroscopic imaging of protein aggregation in living cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828, 2339–2346. https://doi.org/10.1016/j.bbamem.2013.01.014.

    Article  CAS  Google Scholar 

  39. Colembergue, J. P., Rios, D. G., & Prentice, C. (2016). Evaluation and characterization of protein isolates from poultry processing industries by-product. International Journal of Applied Science and Technology, 6, 79–87.

    Google Scholar 

  40. Zhao, W., Yang, R., Zhang, Y., & Wu, L. (2012). Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: High density steam flash-explosion. Green Chemistry, 14(12), 3352–3360. https://doi.org/10.1039/C2GC36243K.

    Article  CAS  Google Scholar 

  41. Alahyaribeik, S., & Ullah, A. (2020). Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. International Journal of Biological Macromolecules, 148, 449–456. https://doi.org/10.1016/j.ijbiomac.2020.01.144.

    Article  CAS  PubMed  Google Scholar 

  42. Kshetri, P., Roy, S. S., Sharma, S. K., Singh, T. S., Ansari, M. A., Prakash, N., & Ngachan, S. (2019). Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste and Biomass Valorization, 10(1), 1–11. https://doi.org/10.1007/s12649-017-0037-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Saugat Prajapati, Sushil Koirala, Anil Kumar Anal. Methodology: Saugat Prajapati, Anil Kumar Anal. Formal analysis and investigation: Saugat Prajapati, Anil Kumar Anal. Writing—original draft preparation: Saugat Prajapati, Sushil Koirala. Writing—review and editing: Sushil Koirala, Anil Kumar Anal. Supervision: Anil Kumar Anal. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anil Kumar Anal.

Ethics declarations

Ethics Approval

Not applicable (NA)

Consent to Participate

Not applicable (NA)

Consent for Publication

Consent approved for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, S., Koirala, S. & Anal, A.K. Bioutilization of Chicken Feather Waste by Newly Isolated Keratinolytic Bacteria and Conversion into Protein Hydrolysates with Improved Functionalities. Appl Biochem Biotechnol 193, 2497–2515 (2021). https://doi.org/10.1007/s12010-021-03554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03554-4

Keywords

Navigation