Skip to main content

Advertisement

Log in

Improving the Thermostability of Glutamate Decarboxylase from Lactobacillus brevis by Consensus Mutagenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

γ-Aminobutyrate (GABA) is an important bioactive compound synthesized through decarboxylation of L-glutamate by the glutamate decarboxylase (GAD). In this study, stabilized variants of the GAD from Lactobacillus brevis were constructed by consensus mutagenesis. Using Consensus Finder (http://cbs-kazlab.oit.umn.edu/), eight positions with the most prevalent amino acid (over 60% threshold) among the homologous family members were identified. Subsequently, these eight residues were individually mutated to match the consensus sequence using site-directed mutagenesis. Compared to the wild-type, T383K variant displayed the largest shift in thermostability among the single variants, with a 3.0 °C increase in semi-inactivation temperature (T5015), a 1.7-fold improvement of half-life (t1/2) at 55 °C, and a 1.2-fold improvement of t1/2 at 37 °C, respectively, while its catalytic efficiency (kcat/Km) was reduced. To obtain the mutant with improvement in both thermostability and catalytic activity, we performed a site-saturation mutation at T383. Notably, mutants T383V and T383G exhibited an increasement in thermostability and kcat/Km than that of wild-type. This study not only emphasizes the value of consensus mutagenesis for improving the thermostability of GAD but also sheds a powerful guidance to study the thermal stability of other enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193-194, 130–135.

    Article  CAS  Google Scholar 

  2. Kaila, K., Ruusuvuori, E., Seja, P., Voipio, J., & Puskarjov, M. (2014). GABA actions and ionic plasticity in epilepsy. Current Opinion in Neurobiology, 26, 34–41.

    Article  CAS  Google Scholar 

  3. Yin, Y. Q., Cheng, C., & Fang, W. M. (2018). Effects of the inhibitor of glutamate decarboxylase on the development and GABA accumulation in germinating fava beans under hypoxia-NaCl stress. RSC Advances, 8, 20456–20461.

    Article  CAS  Google Scholar 

  4. Bednar, D., Beerens, K., Sebestova, E., Bendl, J., Khare, S., Chaloupkova, R., Prokop, Z., Brezovsky, J., Baker, D., & Damborsky, J. (2015). FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Computational Biology, 11(11), e1004556.

    Article  Google Scholar 

  5. Lyu, C. J., Zhao, W. R., Hu, S., Huang, J., Lu, T., Jin, Z. H., Mei, L. H., & Yao, S. J. (2017). A physiology-priented engineering strategy to improve gamma-aminobutyrate production in Lactobacillus brevis. Journal of Agricultural and Food Chemistry, 65, 858–866.

    Article  CAS  Google Scholar 

  6. Park, S. J., Kim, E. Y., Noh, W., Oh, Y. H., Kim, H. Y., Song, B. K., Cho, K. M., Hong, S. H., Lee, S. H., & Jegal, J. (2013). Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 36, 885–892.

    Article  CAS  Google Scholar 

  7. Lammens, T. M., Franssen, M. C. R., Scott, E. L., & Sanders, J. P. M. (2010). Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of γ-aminobutyric acid. Green Chemistry, 12, 1430–1436.

    Article  CAS  Google Scholar 

  8. Lammens, T. M., De Biase, D., Franssen, M. C. R., Scott, E. L., & Sanders, J. P. M. (2009). The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chemistry, 11, 1562–1567.

    Article  CAS  Google Scholar 

  9. Wu, C., & Sun, D. (2014). GABA receptors in brain development, function, and injury. Metabolic Brain Disease, 30, 367–379.

    Article  Google Scholar 

  10. Zhuang, Y. L., Ren, G. J., He, C. M., Li, X. Y., Meng, Q. M., Zhu, C. F., Wang, R. C., & Zhang, J. R. (2010). Cloning and characterization of a maize cDNA encoding glutamate decarboxylase. Plant Molecular Biology Reporter, 28, 620–626.

    Article  CAS  Google Scholar 

  11. Ji, J., Zheng, L. Y., Yue, J. Y., Yao, X. M., Chang, E. M., Xie, T. T., Deng, N., Chen, L. Z., Huang, Y. W., Jiang, Z. P., & Shi, S. Q. (2017). Identification of two CiGADs from Caragana intermedia and their transcriptional responses to abiotic stresses and exogenous abscisic acid. PeerJ, 5, e3439.

    Article  Google Scholar 

  12. Liu, Q. D., Cheng, H. J., Ma, X. Q., Xu, N., Liu, J., & Ma, Y. H. (2016). Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium. Biotechnology Letters, 38(7), 1107–1113.

    Article  CAS  Google Scholar 

  13. Huang, Y., Su, L., & Wu, J. (2016). Pyridoxine supplementation improves the activity of recombinant glutamate decarboxylase and the enzymatic production of gama-aminobutyric acid. PLoS One, 11, e0157466.

    Article  Google Scholar 

  14. Fan, L. Q., Li, M. W., Qiu, Y. J., Chen, Q. M., Jiang, S. J., Shang, Y. J., & Zhao, L. M. (2018). Increasing thermal stability of glutamate decarboxylase from Escherichia coli, by site-directed saturation mutagenesis and its application in GABA production. Journal of Biotechnology, 278(20), 1–9.

    Article  CAS  Google Scholar 

  15. Huang, J., Mei, L. H., Sheng, Q., Yao, S. J., & Lin, D. Q. (2007). Purification and characterization of glutamate decarboxylase of Lactobacillus brevis CGMCC 1306 isolated from fresh milk. Chinese Journal of Chemical Engineering, 15(2), 157–161.

    Article  CAS  Google Scholar 

  16. Lin, Q., Li, D. N., & Qin, H. Z. (2017). Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2. Electronic Journal of Biotechnology, 27, 8–13.

    Article  CAS  Google Scholar 

  17. Ueno, Y., Hayakawa, K., Takahashi, S., & Oda, K. (1997). Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience Biotechnology and Biochemistry, 61(7), 1168–1171.

    Article  CAS  Google Scholar 

  18. Jones, B. J., Lim, H. Y., Huang, J., & Kazlauskas, R. J. (2017). Comparison of five protein engineering strategies to stabilize an α/β-hydrolase. Biochemistry, 56, 6521–6532.

    Article  CAS  Google Scholar 

  19. Saab-Rincón, G., Alwaseem, H., Guzmán-Luna, V., Olvera, L., & Fasan, R. (2018). Stabilization of the reductase domain in the catalytically self-sufficient cytochrome P450BM3 via consensus-guided mutagenesis. ChemBioChem, 11(6), 622–632.

    Article  Google Scholar 

  20. Amin, N., Liu, A. D., Ramer, S., Aehle, W., Meijer, D., Metin, M., Wong, S., Gualfetti, P., & Schellenberger, V. (2004). Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Engineering, Design & Selection: PEDS, 17(11), 787–793.

    Article  CAS  Google Scholar 

  21. Polizzi, K. M., Chaparro-Riggers, J. F., Vazquez-Figueroa, E., & Bommarius, A. S. (2006). Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnology Journal, 1, 531–536.

    Article  CAS  Google Scholar 

  22. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25.

    Article  Google Scholar 

  23. Xie, D. F., Yang, J. X., Lv, C. J., Mei, J. Q., Wang, H. P., Hu, S., Zhao, W. R., Cao, J. R., Tu, J. L., Huang, J., & Mei, L. H. (2019). Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. Journal of Biotechnology, 293, 8–16.

    Article  CAS  Google Scholar 

  24. Steipe, B., Schiller, B., Plückthun, A., & Steinbacher, S. (1994). Sequence statistics reliably predict stabilizing mutations in a protein domain. Journal of Molecular Biology, 240, 188–192.

    Article  CAS  Google Scholar 

  25. Huang, J., Mei, L.-H., & Xia, J. (2007). Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnology and Bioengineering, 96(5), 924–931.

    Article  CAS  Google Scholar 

  26. Fan, E., Huang, J., Hu, S., Mei, L. H., & Yu, K. (2011). Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Annals of Microbiology, 62, 689–698.

    Article  Google Scholar 

  27. Huang, J., Fang, H., Gai, Z. C., Mei, J. Q., Li, J. N., Hu, S., Lv, C. J., Zhao, W. R., & Mei, L. H. (2018). Lactobacillus brevis CGMCC 1306 glutamate decarboxylase: Crystal structure and functional analysis. Biochemical and Biophysical Research Communications, 503, 1703–1709.

    Article  CAS  Google Scholar 

  28. Huang, Y., Niu, B. F., Gao, Y., Fu, L. M., & Li, W. Z. (2010). CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics, 26(5), 680–682.

    Article  CAS  Google Scholar 

  29. Yu, K., Hu, S., Huang, J., & Mei, L. H. (2011). A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase. Enzyme and Microbial Technology, 49(3), 272–276.

    Article  CAS  Google Scholar 

  30. Stragierowicz, J., Darago, A., Brzeznicki, S., & Kilanowicz, A. (2017). Optimization of ultra-performance liquid chromatography (UPLC) with fluorescence detector (FLD) method for the quantitative determination of selected neurotransmitters in rat brain. Medycyna Pracy, 68(5), 583–591.

    PubMed  Google Scholar 

  31. Niesen, F. H., Berglund, H., & Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature Protocols, 2(9), 2212–2221.

    Article  CAS  Google Scholar 

  32. Kim, S. J., Lee, J. A., Joo, J. C., Yoo, Y. J., Kim, Y. H., & Song, B. K. (2010). The development of a thermostable CiP (Coprinus cinereus peroxidase) through in silico design. Biotechnology Progress, 26(4), 1038–1046.

    CAS  PubMed  Google Scholar 

  33. Ishak, S. N. H., Aris, S. N. A., Halim, K. B. A., Ali, M. S. M., Leow, T. C., Kamarudin, N. H. A., Masomian, M., & Rahman, R. N. Z. R. (2017). Molecular dynamic simulation of space and earth-grown crystal structures of thermostable T1 lipase Geobacillus zalihae revealed a better structure. Molecules, 22(10), 1574.

    Article  Google Scholar 

  34. Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. Journal of Molecular Biology, 320, 369–387.

    Article  CAS  Google Scholar 

  35. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  36. Zhu, W. L., Hu, S., Lv, C. J., Zhao, W. R., Wang, H. P., Mei, J. Q., Mei, L. H., & Huang, J. (2019). A single mutation increases the thermostability and activity of Aspergillus terreus amine transaminase. Molecules, 24(7), 1194.

    Article  Google Scholar 

  37. Purmonen, M., Valjakka, J., Takkinen, K., Laitinen, T., & Rouvinen, J. (2007). Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Engineering, Design & Selection: PEDS, 20(11), 551–559.

    Article  CAS  Google Scholar 

  38. Dong, Y. W., Liao, M. L., Meng, X. L., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences of the United States of America, 115, 1274–1279.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 31470793, 31670804, and 31971372) and Zhejiang Natural Science Foundation (Nos. LZ13B060002, LY16B060008, and LQ18B060002); and Innovation Fund for Graduate students of Zhejiang University of Science and Technology (2019YJSKC08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Huang or Lehe Mei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1.16 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., Lyu, C., Liu, C. et al. Improving the Thermostability of Glutamate Decarboxylase from Lactobacillus brevis by Consensus Mutagenesis. Appl Biochem Biotechnol 191, 1456–1469 (2020). https://doi.org/10.1007/s12010-020-03283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03283-0

Keywords

Navigation