Skip to main content
Log in

The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Talaromyces cellulolyticus is a promising strain for industrial cellulase production. In this study, the thaB gene, which is a homologue of the hap2/B gene in other filamentous fungi, was isolated and characterized. When grown in the presence of cellulose, culture supernatants of a thaB-disrupted strain (YDTha) exhibited decreased cellulase and xylanase enzymatic activities compared to the control strain. Furthermore, YDTha exhibited lower expression of the genes encoding cellulases and xylanases compared to the control strain. When cellobiose and lactose (soluble carbon sources) were used as carbon sources, the expression of the genes encoding cellulases and xylanases was decreased in both the YDTha and the control strains, though the expression levels in YDTha remained lower than those in the control strain. These results suggested that thaB has a positive role in cellulase and xylanase production in T. cellulolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Agricultural and Biological Chemistry, 51, 65–74.

    CAS  Google Scholar 

  2. Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29(9), 419–425.

    Article  CAS  PubMed  Google Scholar 

  3. Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Biotechnology for Biofuels, 2, 24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107(3), 256–261.

    Article  CAS  PubMed  Google Scholar 

  5. Stricker, A., Grosstessner-Hain, K., Würleitner, E., & Mach, R. (2006). Eukaryotic Cell, 5, 2128–2137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. van Peij, N., Gielkens, M., de Vries, R., Visser, J., & de Graaff, L. (1998). The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Applied and Environmental Microbiology, 64(10), 3615–3619.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Aro, N., Ilmen, M., Saloheimo, A., & Penttilä, M. (2003). Applied and Environmental Microbiology, 69, 56–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Aro, N., Saloheimo, A., Ilmen, M., & Penttilä, M. (2001). The Journal of Biological Chemistry, 276, 24309–24314.

    Article  CAS  PubMed  Google Scholar 

  9. Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara, S., Morikawa, Y., & Ogasawara, W. (2012). A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genetics and Biology, 49(5), 388–397.

    Article  CAS  PubMed  Google Scholar 

  10. Seiboth, B., Karimi, R. A., Phatale, P. A., Linke, R., Hartl, L., Sauer, D. G., Smith, K. M., Baker, S. E., Freitag, M., & Kubicek, C. P. (2012). The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Molecular Microbiology, 84(6), 1150–1164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yamakawa, Y., Endo, Y., Li, N., Yoshizawa, M., Aoyama, M., Watanabe, A., Kanamaru, K., Kato, M., & Kobayashi, T. (2013). Regulation of cellulolytic genes by McmA, the SRF-MADS box protein in Aspergillus nidulans. Biochemical and Biophysical Research Communications, 431(4), 777–782.

    Article  CAS  PubMed  Google Scholar 

  12. Kunitake, E., Tani, S., Sumitani, J., & Kawaguchi, T. (2012). Applied Microbiology and Biotechnology, 97, 2017–2028.

    Article  CAS  PubMed  Google Scholar 

  13. Coradetti, S. T., Craig, J. P., Xiong, Y., Shock, T., Tian, C., & Glass, N. L. (2012). Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7397–7402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dowzer, C., & Kelly, J. (1989). Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Current Genetics, 15(6), 457–459.

    Article  CAS  PubMed  Google Scholar 

  15. Ilmen, M., Onnela, M. L., Klemsdal, S., Keranen, S., & Penttilä, M. (1996). Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Molecular & General Genetics, 253(3), 303–314.

    CAS  Google Scholar 

  16. Wen, Z., Liao, W., & Chen, S. (2005). Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  17. Fujii, T., Inoue, H., & Ishikawa, K. (2013). AMB Express, 3, 73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Fujii, T., Inoue, H., & Ishikawa, K. (2014). Bioscience, Biotechnology, and Biochemistry, 78, 1564–1567.

    Article  CAS  PubMed  Google Scholar 

  19. Fujii, T., Inoue, H., & Ishikawa, K. (2015). Decreased cellulase and xylanase production in the fungus Talaromyces cellulolyticus by disruption of tacA and tctA genes, encoding putative zinc finger transcriptional factors. Applied Biochemistry and Biotechnology, 175(6), 3218–3229.

    Article  CAS  PubMed  Google Scholar 

  20. Fujii, T., Inoue, H., Ishikawa, K., & Hoshino, T. (2017). Deletion analysis of GH7 endoglucanase gene (cel7B) promoter region in a Talaromyces cellulolyticus ligD-Disrupted Strain. Applied Biochemistry and Biotechnology, 183(4), 1516–1525.

    Article  CAS  PubMed  Google Scholar 

  21. Guarente, L., Lalonde, B., Gifford, P., & Alani, E. (1984). Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell., 36(2), 503–511.

    Article  CAS  PubMed  Google Scholar 

  22. Hortschansky, P., Haas, H., Huber, E. M., Groll, M., & Brakhage, A. A. (2017). The CCAAT-binding complex (CBC) in Aspergillus species. Biochimica et Biophysica Acta, 1860(5), 560–570.

    Article  CAS  PubMed  Google Scholar 

  23. Littlejohn, T. G., & Hynes, M. J. (1992). Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Molecular & General Genetics, 235(1), 81–88.

    Article  CAS  Google Scholar 

  24. Then Bergh, K., Litzka, O., & Brakhage, A. A. (1996). Journal of Bacteriology, 178, 3908–3916.

    Article  Google Scholar 

  25. Thön, M., Al Abdallah, Q., Hortschansky, P., Scharf, D. H., Eisendle, M., Haas, H., & Brakhage, A. A. (2010). The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Research, 38(4), 1098–1113.

    Article  CAS  PubMed  Google Scholar 

  26. Hortschansky, P., Eisendle, M., Al Abdallah, Q., Schmidt, A. D., Bergmann, S., Thön, M., Kniemeyer, O., Abt, B., Seeber, B., Werner, E. R., Kato, M., Brakhage, A. A., & Haas, H. (2007). Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. The EMBO Journal, 26(13), 3157–3168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Brakhage, A. A., Andrianopoulos, A., Kato, M., Steidl, S., Davis, M. A., Tsukagoshi, N., & Hynes, M. J. (1999). Fungal Genet. Biol., 27, 243–252.

    CAS  Google Scholar 

  28. Tanaka, A., Kato, M., Nagase, T., Kobayashi, T., & Tsukagoshi, N. (2002). Biochimica et Biophysica Acta, 1576, 176–182.

    Article  CAS  PubMed  Google Scholar 

  29. Tsukagoshi, N., Kobayashi, T., & Kato, M. (2001). Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. The Journal of General and Applied Microbiology, 47(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  30. Kato, M. (2005). Bioscience, Biotechnology, and Biochemistry, 69, 663–672.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, H., & Kinsey, J. A. (1995). Purification of a heteromeric CCAAT binding protein from Neurospora crassa. Molecular & General Genetics, 249(3), 301–308.

    Article  CAS  Google Scholar 

  32. Chen, H., Crabb, J. W., & Kinsey, J. A. (1998). The Neurospora aab-1 gene encodes a CCAAT binding protein homologous to yeast HAP5. Genetics., 148(1), 123–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zeilinger, S., Mach, R. L., & Kubicek, C. P. (1998). The Journal of Biological Chemistry, 273, 34463–34471.

    Article  CAS  PubMed  Google Scholar 

  34. Zeilinger, S., Schmoll, M., Pail, M., Mach, R. L., & Kubicek, C. P. (2003). Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Molecular Genetics and Genomics, 270(1), 46–55.

    Article  CAS  PubMed  Google Scholar 

  35. Ridenour, J. B., & Bluhm, B. H. (2014). Fungal Genet. Biol., 69, 52–64.

    CAS  Google Scholar 

  36. Inoue, H., Fujii, T., Yoshimi, M., Taylor 2nd., L. E., Decker, S. R., Kishishita, S., Nakabayashi, M., & Ishikawa, K. (2013). Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus. Journal of Industrial Microbiology & Biotechnology, 40(8), 823–830.

    Article  CAS  Google Scholar 

  37. Fujii, T., Iwata, K., Murakami, K., Yano, S., & Sawayama, S. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 245–249.

    Article  CAS  PubMed  Google Scholar 

  38. Fujii, T., Murakami, K., & Sawayama, S. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 419–422.

    Article  CAS  PubMed  Google Scholar 

  39. Fujii, T., Koike, H., Sawayama, S., Yano, S., & Inoue, H. (2015). Genome Announcements, 26, 3.

    Google Scholar 

  40. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2008). Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. Journal of Bioscience and Bioengineering, 106(2), 115–120.

    Article  CAS  PubMed  Google Scholar 

  41. Ilemen, M., Saloheimo, A., Onnela, M. L., & Penttila, M. E. (1997). Applied and Environmental Microbiology, 63, 1298–1306.

    Article  Google Scholar 

  42. Nogawa, M., Goto, M., Okada, H., & Morikawa, Y. (2001). L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Current Genetics, 38(6), 329–334.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Bio-Conversion group of AIST for helpful discussions.

Funding

This study was supported by Japan MEXT/JSPS KAKENHI Grant Number 26850058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Fujii.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Matsushika, A. The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 190, 1360–1370 (2020). https://doi.org/10.1007/s12010-019-03190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03190-z

Keywords

Navigation