Skip to main content
Log in

The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo− DNA Polymerase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Methods for isothermal amplification of nucleic acids are gained more attention in the last two decades. For isothermal amplification, DNA polymerases with strand displacement activity are required, and Bst exo− is one of the most commonly used polymerases. However, Bst exo− is able to cause nonspecific DNA amplification through multimerization, which leads to a set of undesirable by-products. In this study, circumstances that facilitate DNA multimerization by Bst exo− polymerase have been determined. We found that an essential requirement for multimerization is the presence of short (50–60 bp) DNA duplexes formed through primer extension after annealing on the template or in homo- and heterodimers. The highest multimerization efficiency is observed for Bst 2.0 polymerase in buffers with a high salt concentration and/or in the presence of reducing agents (for example, β-mercaptoethanol). Multimerization occurs mainly at 55–60 °С, while specific isothermal amplification is more efficient at 60–65 °С. The SYBR Green I intercalating dye inhibits multimerization with Bst LF and Bst 2.0 polymerases in concentrations above 0.25×, whereas inhibition with Bst 3.0 polymerase occurs only above 1.25×. The obtained results allow to elaborate accurate and reliable methods for isothermal amplification of nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350.

    Article  CAS  Google Scholar 

  2. Bartlett, J. M. S., & Stirling, D. (2003). Methods in molecular biology, vol. 226: PCR protocols (2nd ed.). Totowa: Humana.

    Google Scholar 

  3. Demidov, V. V., & Broude, N. E. (2004). DNA amplification: current technologies and applications (1st ed.). Wymondham: Horizon bioscience.

    Google Scholar 

  4. Fakruddin, M., Mannan, K. S., Chowdhury, A., Mazumdar, R. M., Hossain, M. N., Islam, S., & Chowdhury, M. A. (2013). Nucleic acid amplification: alternative methods of polymerase chain reaction. Journal of Pharmacy and Bioallied Sciences, 5(4), 245–252.

    Article  Google Scholar 

  5. Zhao, Y., Chen, F., Li, Q., Wang, L., & Fan, C. (2015). Isothermal amplification of nucleic acids. Chemical reviews, 115(22), 12491–12545.

    Article  CAS  Google Scholar 

  6. Fozooni, T., Ravan, H., & Sasan, H. (2017). Signal amplification technologies for the detection of nucleic acids: from cell-free analysis to live-cell imaging. Applied Biochemistry and Biotechnology, 183(4), 1224–1253.

    Article  CAS  Google Scholar 

  7. Ko, J., & Yoo, J. C. (2018). Loop-mediated isothermal amplification using a lab-on-a-disc device with thin-film phase change material. Applied Biochemistry and Biotechnology, 186(1), 54–65.

    Article  CAS  Google Scholar 

  8. Chen, Y., Cheng, N., Xu, Y., Huang, K., Luo, Y., & Xu, W. (2016). Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosensors and Bioelectronics, 81, 317–323.

    Article  CAS  Google Scholar 

  9. Moghimi, H., Moradi, A., Hamedi, J., & Basiri, M. (2015). Development of a loop-mediated isothermal amplification assay for rapid and specific identification of ACT producing Alternaria alternata, the agent of brown spot disease in tangerine. Applied Biochemistry and Biotechnology, 178(6), 1207–1219.

    Article  Google Scholar 

  10. Kaocharoen, S., Wang, W., Tsui, K. M., Trilles, L., Kong, F., & Meyer, W. (2008). Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis, 29(15), 3183–3191.

    CAS  PubMed  Google Scholar 

  11. Wang, X. R., Wu, L. F., Wang, Y., Ma, Y. Y., Chen, F. H., & Ou, H. L. (2015). Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification. Applied Biochemistry and Biotechnology, 175(2), 882–891.

    Article  CAS  Google Scholar 

  12. Liu, W., Zhang, H., Hu, D., Lu, S., & Sun, X. (2018). The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. Journal of Clinical Laboratory Analysis, 32(2), e22267.

    Article  Google Scholar 

  13. Tao, C., Yang, Y., Li, X., Zheng, X., Ren, H., Li, K., & Zhou, R. (2016). Rapid and sensitive detection of sFAT-1 transgenic pigs by visual loop-mediated isothermal amplification. Applied Biochemistry and Biotechnology, 179(6), 938–946.

    Article  CAS  Google Scholar 

  14. Lv, J., Xie, S., Cai, W., Zhang, J., Tang, D., & Tang, Y. (2017). Highly effective target converting strategy for ultrasensitive electrochemical assay of Hg2+. The Analyst, 142(24), 4708–4714.

    Article  CAS  Google Scholar 

  15. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), E63.

    Article  CAS  Google Scholar 

  16. Compton, J. (1991). Nucleic acid sequence-based amplification. Nature, 350(6313), 91–92.

    Article  CAS  Google Scholar 

  17. Walter, N. G., & Strunk, G. (1994). Strand displacement amplification as an in vitro model for rolling-circle replication: deletion formation and evolution during serial transfer. Proceedings of the National Academy of Sciences of the United States of America, 91(17), 7937–7941.

    Article  CAS  Google Scholar 

  18. Fire, A., & Xu, S. Q. (1995). Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences of the United States of America, 92(10), 4641–4645.

    Article  CAS  Google Scholar 

  19. Mohsen, M. G., & Kool, E. T. (2016). The discovery of rolling circle amplification and rolling circle transcription. Accounts of Chemical Research, 49(11), 2540–2550.

    Article  CAS  Google Scholar 

  20. Ali, M. M., Li, F., Zhang, Z., Zhang, K., Kang, D. K., Ankrum, J. A., Le, X. C., & Zhao, W. (2014). Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews, 43(10), 3324–3341.

    Article  CAS  Google Scholar 

  21. Murakami, T., Sumaoka, J., & Komiyama, M. (2009). Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Research, 37(3), e19.

    Article  Google Scholar 

  22. Gu, L., Yan, W., Liu, L., Wang, S., Zhang, X., & Lyu, M. (2018). Research progress on rolling circle amplification (RCA)-based biomedical sensing. Pharmaceuticals, 11(2), 35.

    Article  Google Scholar 

  23. Oscorbin, I. P., Boyarskikh, U. A., & Filipenko, M. L. (2015). Large fragment of DNA polymerase I from Geobacillus sp. 777: cloning and comparison with DNA polymerases I in practical applications. Molecular Biotechnology, 57(10), 947–959.

    Article  CAS  Google Scholar 

  24. Oscorbin, I. P., Belousova, E. A., Boyarskikh, U. A., Zakabunin, A. I., Khrapov, E. A., & Filipenko, M. L. (2017). Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance. Nucleic Acids Research, 45(16), 9595–9610.

    Article  CAS  Google Scholar 

  25. Zyrina, N. V., Antipova, V. N., & Zheleznaya, L. A. (2014). Ab initio synthesis by DNA polymerases. FEMS Microbiology Letters, 351(1), 1–6.

    Article  CAS  Google Scholar 

  26. Hafner, G. J., Yang, I. C., Wolter, L. C., Stafford, M. R., & Giffard, P. M. (2001). Isothermal amplification and multimerization of DNA by Bst DNA polymerase. BioTechniques, 30(4), 852–867.

    Article  CAS  Google Scholar 

  27. Wang, G., Ding, X., Hu, J., Wu, W., Sun, J., & Mu, Y. (2017). Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities. Scientific Reports, 7(1), 13928.

    Article  Google Scholar 

  28. Viguera, E., Canceill, D., & Ehrlich, S. D. (2001). In vitro replication slippage by DNA polymerases from thermophilic organisms. Journal of Molecular Biology, 312(2), 323–333.

    Article  CAS  Google Scholar 

  29. Qian, J., Ferguson, T. M., Shinde, D. N., Ramírez-Borrero, A. J., Hintze, A., Adami, C., & Niemz, A. (2012). Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Research, 40(11), e87.

    Article  CAS  Google Scholar 

  30. Sambrook, J., & Russell, D. W. (2006). Isolation of DNA fragments from polyacrylamide gels by the crush and soak method. CSH Protocols., 2006(1), pdb.prot2936. https://doi.org/10.1101/pdb.prot2936.

    Article  PubMed  Google Scholar 

  31. Güixens-Gallardo, P., Hocek, M., & Perlíková, P. (2016). Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorganic & Medicinal Chemistry Letters, 26(2), 288–291.

    Article  Google Scholar 

  32. Lee, D., Shin, Y., Seok, C., Hwang, K. S., Yoon, D. S., & Lee, J. H. (2016). Simple and Highly sensitive molecular diagnosis of Zika Virus by lateral flow analysis. Analytical Chemistry, 88(24), 12272–12278.

    Article  CAS  Google Scholar 

  33. Oscorbin, I. P., Belousova, E. A., Zakabunin, A. I., Boyarskikh, U. A., & Filipenko, M. L. (2016). Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP). Biotechniques., 61, 20–25.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian State Federal budget (No. АААА-А16-116020350032-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravil R. Garafutdinov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garafutdinov, R.R., Gilvanov, A.R. & Sakhabutdinova, A.R. The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo− DNA Polymerase. Appl Biochem Biotechnol 190, 758–771 (2020). https://doi.org/10.1007/s12010-019-03127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03127-6

Keywords

Navigation