Skip to main content
Log in

Loop-Mediated Isothermal Amplification Using a Lab-on-a-Disc Device with Thin-film Phase Change Material

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The design and fabrication of temperature measurement systems that facilitate successful realization of DNA amplification using a lab-on-a-disc (LOD) device are a highly challenging task. The major challenge lies in the fact that such a system must be directly attached to a heating chamber in a way that enables the accurate measurement of temperature of the chamber while allowing the LOD to rotate. This paper presents a temperature control system for implementing isothermal amplification of DNA samples using an LOD device. The proposed system utilizes a thin-film phase change material and non-contact heating system to remotely measure the actual temperature of the chamber and, if required, rapidly heat it to the desired temperature. The results of the experiments performed in this study demonstrate that the proposed system provides an automated platform for molecular amplification and exhibits an operational performance comparable to that of traditional microcentrifuge tube-based isothermal amplification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Madou, M., Zoval, J., Jia, G., Kido, H., Kim, J., & Kim, N. (2006). Lab on a CD. Annual Review of Biomedical Engineering, 8(1), 601–628.

    Article  CAS  PubMed  Google Scholar 

  2. Gopinath, S. C., Awazu, K., Tominaga, J., & Kumar, P. K. (2008). Monitoring biomolecular interactions on a digital versatile disk: a BioDVD platform technology. ACS Nano, 2(9), 1885–1895.

    Article  CAS  PubMed  Google Scholar 

  3. Mark, D., Weber, P., Lutz, S., Focke, M., Zengerle, R., & von, S. F. (2011). Aliquoting on the centrifugal microfluidic platform based on centrifugo-pneumatic valves. Microfluidics and Nanofluidics, 10(6), 1279–1288.

    Article  CAS  Google Scholar 

  4. Glass, N. R., Shilton, R. J., Chan, P. P., Friend, J. R., & Yeo, L. Y. (2012). Miniaturized lab-on-a-disc (miniLOAD). Small, 8(12), 1881–1888.

    Article  CAS  PubMed  Google Scholar 

  5. Agrawal, S., Morarka, A., Bodas, D., & Paknikar, K. M. (2012). Multiplexed detection of waterborne pathogens in circular microfluidics. Applied Biochemistry and Biotechnology, 167(6), 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  6. Park, J., Sunkara, V., Kim, T. H., Hwang, H., & Cho, Y. K. (2012). Lab-on-a-disc for fully integrated multiplex immunoassays. Analytical Chemistry, 84(5), 2133–2140.

    Article  CAS  PubMed  Google Scholar 

  7. Gorkin, R., Park, J., Siegrist, J., Amasia, M., Lee, B. S., Park, J. M., & Cho, Y. K. (2010). Centrifugal microfluidics for biomedical applications. Lab on a Chip, 10(14), 1758–1773.

    Article  CAS  PubMed  Google Scholar 

  8. Grumann, M., Geipel, A., Riegger, L., Zengerle, R., & Ducrée, J. (2005). Batch-mode mixing on centrifugal microfluidic platforms. Lab on a Chip, 5(5), 560–565.

    Article  CAS  PubMed  Google Scholar 

  9. Ducrée, J., Haeberle, S., Brenner, T., Glatzel, T., & Zengerle, R. (2006). Patterning of flow and mixing in rotating radial microchannels. Microfluidics and Nanofluidics, 2(2), 97–105.

    Article  Google Scholar 

  10. Roy, E., Stewart, G., Mounier, M., Malic, L., Peytavi, R., Clime, L., & Veres, T. (2015). From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care lab on a disc. Lab on a Chip, 15(2), 406–416.

    Article  CAS  PubMed  Google Scholar 

  11. Park, J. M., Cho, Y. K., Lee, B. S., Lee, J. G., & Ko, C. (2007). Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab on a Chip, 7(5), 557–564.

    Article  CAS  PubMed  Google Scholar 

  12. Steigert, J., Grumann, M., Brenner, T., Riegger, L., Harter, J., Zengerle, R., & Ducrée, J. (2006). Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab on a Chip, 6(8), 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, G., Ho, H. P., Chen, Q., Yang, A. K. L., Kwok, H. C., Wu, S. Y., & Zhang, X. (2013). A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control. Lab on a Chip, 13(18), 3698–3706.

    Article  CAS  PubMed  Google Scholar 

  14. Tachibana, H., Saito, M., Shibuya, S., Tsuji, K., Miyagawa, N., Yamanaka, K., & Tamiya, E. (2015). On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosensors and Bioelectronics, 74, 725–730.

    Article  CAS  PubMed  Google Scholar 

  15. DuVall, J. A., Le, R. D., Tsuei, A. C., Thompson, B. L., Birch, C., Li, J., & Storts, D. R. (2016). A rotationally-driven polyethylene terephthalate microdevice with integrated reagent mixing for multiplexed PCR amplification of DNA. Analytical Methods, 8(40), 7331–7340.

    Article  CAS  Google Scholar 

  16. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moghimi, H., Moradi, A., Hamedi, J., & Basiri, M. (2016). Development of a loop-mediated isothermal amplification assay for rapid and specific identification of ACT producing Alternaria alternata, the agent of brown spot disease in tangerine. Applied Biochemistry and Biotechnology, 178(6), 1207–1219.

    Article  CAS  PubMed  Google Scholar 

  18. Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289(1), 150–154.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, T. H., Park, J., Kim, C. J., & Cho, Y. K. (2014). Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Analytical Chemistry, 86(8), 3841–3848.

    Article  CAS  PubMed  Google Scholar 

  20. Phaneuf, C., Light, Y. K., Tran, H., Singh, A. K., Koh, C. Y. (2015). Non-contact heating system for a centrifugal microlfuidic platform (no. SAND2015-8608C), Sandia National Laboratories (SNL-CA), Livermore, CA (United States).

  21. Sayad, A. A., Ibrahim, F., Uddin, S. M., Pei, K. X., Mohktar, M. S., Madou, M., & Thong, K. L. (2016). A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sensors and Actuators B Chemical, 227, 600–609.

    Article  CAS  Google Scholar 

  22. Loo, J. F. C., Kwok, H. C., Leung, C. C. H., Wu, S. Y., Law, I. L. G., Cheung, Y. K., & Kong, S. K. (2017). Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab-on-a-disc. Biosensors and Bioelectronics, 93, 212–219.

    Article  CAS  PubMed  Google Scholar 

  23. Lim, D., & Yoo, J. C. (2017). Chemical cell lysis system applicable to lab-on-a-disc. Applied Biochemistry and Biotechnology, 183(1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  24. Cho, A. R., Dong, H. J., & Cho, S. (2013). Rapid and sensitive detection of Salmonella spp. by using a loop-mediated isothermal amplification assay in duck carcass sample. Korean Journal for Food Science of Animal Resources, 33(5), 655–663.

    Article  Google Scholar 

  25. Sarı, A. (2004). Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 45(13–14), 2033–2042.

    Article  CAS  Google Scholar 

  26. Yoo, J. C. (2016). Bio drive apparatus, and assay method using the same, Patent No: US 9,279,818 B2 (Mar. 8).

  27. Kuniyuki, K. (2007). Optical disk apparatus and a sliding driving mechanism for an optical pickup thereof, Patent No: US 7,266,060 B2 (Sep. 4).

  28. Damien, K., Mary, O.’. S., & Jens, D. (2014). Optical detection strategies for centrifugal microfluidic platforms. Journal of Modern Optics, 61(2), 85–101.

    Article  CAS  Google Scholar 

  29. Chen, Z., Zhang, K., Yin, H., Li, Q., Wang, L., & Liu, Z. (2015). Detection of Salmonella and several common Salmonella serotypes in food by loop-mediated isothermal amplification method. Food Science and Human Wellness, 4(2), 75–79.

    Article  Google Scholar 

  30. Choi, M. S., & Yoo, J. C. (2015). Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect. Applied Biochemistry and Biotechnology, 175(8), 3778–3787.

    Article  CAS  PubMed  Google Scholar 

  31. Swinehart, D. F. (1962). The beer-lambert law. Journal of Chemical Education, 39(7), 333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chern Yoo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J., Yoo, JC. Loop-Mediated Isothermal Amplification Using a Lab-on-a-Disc Device with Thin-film Phase Change Material. Appl Biochem Biotechnol 186, 54–65 (2018). https://doi.org/10.1007/s12010-018-2720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2720-8

Keywords

Navigation