Skip to main content
Log in

Application of Protein Hydrolysates from Defatted Walnut Meal in High-Gravity Brewing to Improve Fermentation Performance of Lager Yeast

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protein hydrolysates were prepared from an industrially defatted walnut meal (DWMPH) by enzymolysis employing Neutrase, Protamex, and Flavorzyme, respectively, with/without ultrasonic treatment. The effects of DWMPH supplementations on fermentation performance of lager yeast in high-gravity brewing were investigated. Results showed that ultrasonic-assisted enzymolysis simultaneous treatment (UAE) and ultrasonic pretreatment followed by enzymolysis (UPE) significantly increased degree of hydrolysis (DH) by 1.43 times and 0.71 times of traditional enzymolysis (TE) at least, respectively, Protamex treatment exhibited higher DH (13.3–32.8%) than Neutrase (9.2–25.3%) or Flavorzyme (11.8–28.7%). Compared with control, DWMPH supplementations prepared by UAE using Protamex (UAE-P), Neutrase (UAE-N), or Flavorzyme (UAE-F) significantly improved fermentation performance of lager yeast, especially for UAE-P with the highest major fractions of Mw < 1 kDa, increased wort fermentability and ethanol production by 15% and 17%, respectively, while UAE-F with the highest major fractions of Mw > 3 kDa obviously improved the foam stability of final beers. Furthermore, DWMPH supplementations significantly increased yeast growth and cell viability, promoted glycogen and trehalose accumulation, upregulated stress markers HSP12 and SSA3 expression in yeast cells, improved the formation of higher alcohols and esters, and increased the ratio of higher alcohol to ester indicating a better balanced taste of final beers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gu, M., Chen, H., Zhao, M., Wang, X., Yang, B., Ren, J., & Su, G. (2015). Identification of antioxidant peptides released from defatted walnut (Juglans sigillata Dode) meal proteins with pancreatin. LWT- Food Science and Technology, 60(1), 213–220.

    Article  CAS  Google Scholar 

  2. Chen, N., Yang, H., Sun, Y., Niu, J., & Liu, S. (2012). Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides., 38(2), 344–349.

    Article  CAS  Google Scholar 

  3. Chen, H., Zhao, M., Lin, L., Wang, J., Sun-waterhouse, D., Dong, Y., Zhuang, M., & Su, G. (2015). Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Research International, 78, 216–223.

    Article  CAS  Google Scholar 

  4. Li, W., Zhao, T., Zhang, J., Xu, J., Sun-waterhouse, D., Zhao, M., & Su, G. (2017). Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice. Journal of Food Science and Technology, 54, 1–9.

    Article  CAS  Google Scholar 

  5. Liu, C., Ma, F., Wang, T., Wang, S., Chen, W., Xiao, J., Sheng, J., Yang, X., & Liu, W. (2018). Preparation of defatted walnut meal hydrolysate-loaded enteric-coated pellets with enhanced oral absorption efficiency. Journal of Drug Delivery Science and Technology, 46, 207–214.

    Article  Google Scholar 

  6. Wang, C., Tu, M., Wu, D., Chen, H., Chen, C., Wang, Z., & Jiang, L. (2018). Identification of an ace-inhibitory peptide from walnut protein and its evaluation of the inhibitory mechanism. International Journal of Molecular Sciences, 19(4), 1156.

    Article  Google Scholar 

  7. Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2019). A review of recent advances in high gravity ethanol fermentation. Renewable Energy, 133, 1366–1379.

    Article  CAS  Google Scholar 

  8. Puligundla, P., Smogrovicova, D., Obulam, V. S. R., & Ko, S. (2011). Very high gravity (VHG) ethanolic brewing and fermentation: a research update. Journal of Industrial Microbiology & Biotechnology, 38(9), 1133–1144.

    Article  CAS  Google Scholar 

  9. Lei, H., Zhao, H., Yu, Z., & Zhao, M. (2012). Effects of wort gravity and nitrogen level on fermentation performance of brewer’s yeast and the formation of flavor volatiles. Applied Biochemistry and Biotechnology, 166(6), 1562–1574.

    Article  CAS  Google Scholar 

  10. Piddocke, M. P., Fazio, A., Vongsangnak, W., Wong, M. L., Heldt-Hansen, H. P., Workman, C., Nielsen, J., & Olsson, L. (2011). Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using “-omics” techniques. Microbial Cell Factories, 10(1), 27.

    Article  CAS  Google Scholar 

  11. Yang, H., Zong, X., Cui, C., Mu, L., & Zhao, H. (2018). Wheat gluten hydrolysates separated by macroporous resins enhance the stress tolerance in brewer’s yeast. Food Chemistry, 268, 162–170.

    Article  CAS  Google Scholar 

  12. Mo, F., Zhao, H., Lei, H., & Zhao, M. (2013). Effects of nitrogen composition on fermentation performance of brewer’s yeast and the absorption of peptides with different molecular weights. Applied Biochemistry and Biotechnology, 171(6), 1339–1350.

    Article  CAS  Google Scholar 

  13. Zhao, H., Wan, C., Zhao, M., Lei, H., & Mo, F. (2015). Effects of soy protein hydrolysates on the growth and fermentation performances of brewer’s yeast. International Journal of Food Science and Technology, 49, 2015–2022.

    Article  Google Scholar 

  14. Zhou, Y., Yang, H., Zong, X., Cui, C., Mu, L., & Zhao, H. (2017). Effects of wheat gluten hydrolysates fractionated by different methods on the growth and fermentation performances of brewer’s yeast under high gravity fermentation. International Journal of Food Science and Technology, 53, 812–818.

    Article  Google Scholar 

  15. Verbelen, P. J., Saerens, S. M., Van Mulders, S. E., Delvaux, F., & Delvaux, F. R. (2009). The role of oxygen in yeast metabolism during high cell density brewery fermentations. Applied Microbiology and Biotechnology, 82(6), 1143–1156.

    Article  CAS  Google Scholar 

  16. Van Nierop, S. N. E., Evans, E. D., Axcell, C. B., Cantrell, C. I., & Rautenbach, M. (2004). Impact of different wort boiling temperatures on the beer foam stabilizing properties of lipid transfer protein 1. Journal of Agricultural and Food Chemistry, 52(10), 3120–3129.

    Article  Google Scholar 

  17. Pinho, O., Ferreira, I. M. P. L. V. O., & Santos, L. H. M. L. M. (2006). Method optimization by solid-phase microextraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. Journal of Chromatography. A, 1121(2), 145–153.

    Article  CAS  Google Scholar 

  18. Beltran, G., EsteveZarzoso, B., Rozès, N., Mas, A., & Guillamón, J. M. (2005). Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. Journal of Agricultural and Food Chemistry, 53(4), 996–1002.

    Article  CAS  Google Scholar 

  19. Jia, J., Ma, H., Zhao, W., Wang, Z., Tian, W., Lin, L., & He, R. (2010). The use of ultrasound for enzymatic preparation of ace-inhibitory peptides from wheat germ protein. Food Chemistry, 119(1), 336–342.

    Article  CAS  Google Scholar 

  20. Deed, N. K., van Vuuren, H. J. J., & Gardner, R. C. (2011). Effects of nitrogen catabolite repression and di-ammonium phosphate addition during wine fermentation by a commercial strain of S. cerevisiae. Applied Microbiology and Biotechnology, 89(5), 1537–1549.

    Article  CAS  Google Scholar 

  21. Lei, H., Zhao, H., & Zhao, M. (2013). Proteases supplementation to high gravity worts enhances fermentation performance of brewer’s yeast. Biochemical Engineering Journal, 77, 1–6.

    Article  CAS  Google Scholar 

  22. Piddocke, M. P., Kreisz, S., Heldt-Hansen, H. P., Nielsen, K. F., & Olsson, L. (2009). Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, 84(3), 453–464.

    Article  CAS  Google Scholar 

  23. Gibson, B. R., Lawrence, S. J., Leclaire, J. P. R., Powell, C. D., & Smart, K. A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews, 31(5), 535–569.

    Article  CAS  Google Scholar 

  24. Jain, S., Dholakia, H., Kirtley, W., & Oelkers, P. (2016). Energy storage in yeast: regulation and competition with ethanol production. Current Microbiology, 73, 1–8.

    Article  Google Scholar 

  25. Swan, T. M., & Watson, K. (2010). Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiology Letters, 169, 191–197.

    Article  Google Scholar 

  26. Orellana, M., Aceituno, F. F., Slater, A. W., Almonacid, L. I., Melo, F., & Agosin, E. (2014). Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain ec1118 after an oxygen impulse under carbon sufficient, nitrogen-limited fermentative conditions. FEMS Yeast Research, 14(3), 412–424.

    Article  CAS  Google Scholar 

  27. Alexandre, H., Ansanay-Galeote, V., Dequin, S., & Blondin, B. (2001). Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Letters, 498(1), 98–103.

    Article  CAS  Google Scholar 

  28. Bamforth, C. W. (2015). The relative significance of physics and chemistry for beer foam excellence: theory and practice. Journal of the Institute of Brewing, 110, 259–266.

    Article  Google Scholar 

  29. Brey, S. E., De, C. S., Rogers, P. J., Bryce, J. H., Morris, P. C., Mitchell, W. J., & Stewart, G. G. (2012). The effect of proteinase a on foam-active polypeptides during high and low gravity fermentation. Journal of the Institute of Brewing, 109, 194–202.

    Article  Google Scholar 

  30. Steiner, E., Gastl, M., & Becker, T. (2011). Protein changes during malting and brewing with focus on haze and foam formation: a review. European Food Research and Technology, 232(2), 191–204.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 31501467), the Shaanxi Province Key Research and Development Plan (No. 2017NY-157), and the Fundamental Research Funds for the Central Universities (No. 2452016086) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Lei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both of Tianlin Li and Caiyun Wu rank the first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wu, C., Liao, J. et al. Application of Protein Hydrolysates from Defatted Walnut Meal in High-Gravity Brewing to Improve Fermentation Performance of Lager Yeast. Appl Biochem Biotechnol 190, 360–372 (2020). https://doi.org/10.1007/s12010-019-03109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03109-8

Keywords

Navigation