Skip to main content
Log in

Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains have been constructed and used for the production of various bio-based chemicals. In this study, we developed a novel genome shuffling method for S. cerevisiae using CRISPR-Cas. By using this, the thermotolerant mutant strain T8-292, which can grow well at 39 °C, was successfully created. The strain also showed higher cell viability in low pH and high ethanol concentration. In addition, the differences in genome structure between mutant and parent strains were suggested by random amplified polymorphic DNA PCR method. Our genome shuffling method could be a promising strategy for improvement of various stress tolerance in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nevoigt, E. (2008). Progress in Metabolic Engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 72(3), 379–412.

    Article  CAS  PubMed  Google Scholar 

  2. Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic Engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 64(1), 34–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abdel-Banat, B. M. A., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 85(4), 861–867.

    Article  CAS  PubMed  Google Scholar 

  4. Gao, L., Liu, Y., Sun, H., Li, C., Zhao, Z., & Liu, G. (2016). Advances in mechanisms and modifications for rendering yeast thermotolerance. Journal of Bioscience and Bioengineering, 121(6), 599–606.

    Article  CAS  PubMed  Google Scholar 

  5. Doğan, A., Demirci, S., Aytekin, A. Ö., & Şahin, F. (2014). Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Applied Biochemistry and Biotechnology, 174(1), 28–42.

    Article  PubMed  Google Scholar 

  6. Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordeckers, K., & Verstrepen, K. J. (2014). Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiology Reviews, 38(5), 947–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sridhar, M., Sree, N. K., & Rao, L. V. (2002). Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresource Technology, 83(3), 199–202.

    Article  CAS  PubMed  Google Scholar 

  8. Abe, H., Fujita, Y., Takaoka, Y., Kurita, E., Yano, S., Tanaka, N., & Nakayama, K. (2009). Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase δ. Journal of Bioscience and Bioengineering, 108(3), 199–204.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C., & del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature., 415(6872), 644–646.

    Article  CAS  PubMed  Google Scholar 

  10. Shi, D., Wang, C., & Wang, K. (2009). Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 36(1), 139–147.

    Article  CAS  Google Scholar 

  11. Paques, F., & Haber, J. E. (1999). Microbiology and Molecular Biology Reviews, 63, 349–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cameron, J. R., Loh, E. Y., & Davis, R. W. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell., 16(4), 739–751.

    Article  CAS  PubMed  Google Scholar 

  13. Atienzar, F. A., & Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research, 613(2-3), 76–102.

    Article  CAS  PubMed  Google Scholar 

  14. Xu, K., Ren, C., Liu, Z., Zhang, T., Zhang, T., Li, D., Wang, L., Yan, Q., Guo, L., Shen, J., & Zhang, Z. (2015). Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cellular and Molecular Life Sciences, 72(2), 383–399.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, D. C., Yang, B. C., & Kuo, T. T. (1992). One-step transformation of yeast in stationary phase. Current Genetics, 21(1), 83–84.

    Article  CAS  PubMed  Google Scholar 

  16. Yamada, R., Wakita, K., & Ogino, H. (2017). Global metabolic engineering of glycolytic pathway via multicopy integration in Saccharomyces cerevisiae. ACS Synthetic Biology, 6(4), 659–666.

    Article  CAS  PubMed  Google Scholar 

  17. Couto, M. M. B., van der Vossen, J. M. B. M., Hofstra, H., & Huis in’t Veld, J. H. J. (1994). RAPD analysis: a rapid technique for differentiation of spoilage yeasts. International Journal of Food Microbiology, 24(1-2), 249–−260.

    Article  CAS  Google Scholar 

  18. Rasband, W. S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2018. Accessed in 2016.

  19. Li, J., Wang, S., VanDusen, W. J., Schultz, L. D., George, H. A., Herber, W. K., Chae, H. J., Bentley, W. E., & Rao, G. (2000). Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of theGAL1 promoter. Biotechnology and Bioengineering, 70(2), 187–196.

    Article  CAS  PubMed  Google Scholar 

  20. Caspeta, L., Chen, Y., Ghiaci, P., Feizi, A., Buskov, S., Hallström, B. M., Petranovic, D., & Nielsen, J. (2014). Altered sterol composition renders yeast thermotolerant. Science., 346(6205), 75–78.

    Article  CAS  PubMed  Google Scholar 

  21. Jasin, M., & Rothstein, R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harbor Perspectives in Biology, 5(11), a012740.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kraus, E., Leung, W. Y., & Haber, J. E. (2001). Break-induced replication: a review and an example in budding yeast. PNAS., 98(15), 8255–8262.

    Article  CAS  PubMed  Google Scholar 

  24. Williamson, V. M. (1983). Transposable elements in yeast. International Review of Cytology, 83, 1–25.

    Article  CAS  PubMed  Google Scholar 

  25. Wilke, C. M., & Adams, A. (1992). Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics., 131(1), 31–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, M., & Liu, Z. L. (2010). Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 87(3), 829–845.

    Article  CAS  PubMed  Google Scholar 

  27. Caspeta, L., Castillo, T., & Nielsen, J. (2015). Frontiers in Bioengineering and Biotechnology, 3, 184.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 109(1), 13–24.

    CAS  PubMed  Google Scholar 

  29. Kitichantaropas, Y., Boonchird, C., Sugiyama, M., Kaneko, Y., Harashima, S., & Auesukaree, C. (2016). Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express, 6(1), 107.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carmelo, V., Bogaerts, P., & Sá-Correia, I. (1996). Activity of plasma membrane H + -ATPase and expression of PMA1 and PMA2 genes in S accharomyces cerevisiae cells grown at optimal and low pH. Archives of Microbiology, 166(5), 315–320.

    Article  CAS  PubMed  Google Scholar 

  31. Andrighetto, C., Psomas, E., Tzanetakis, N., Suzzi, G., & Lombardi, A. (2000). Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeasts isolated from dairy products. Letters in Applied Microbiology, 30(1), 5–9.

    Article  CAS  PubMed  Google Scholar 

  32. Cenis, J. L. (1993). Identification of Four MajorMeloidogynespp. by Random Amplified Polymorphic DNA (RAPD-PCR). American Physical Society, 83(1), 76–80.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Japan Society for the Promotion of Science KAKENHI (grant number JP18K14069) and KAKENHI Specific Support Operation of Osaka Prefecture University to RY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Yamada.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, R., Yamada, R. & Ogino, H. Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution. Appl Biochem Biotechnol 189, 810–821 (2019). https://doi.org/10.1007/s12010-019-03040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03040-y

Keywords

Navigation